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Review

Abstract

Calculating the sample size in scientific studies is one of the critical issues as regards the scientific contribution of the study. The sample size critically 
affects the hypothesis and the study design, and there is no straightforward way of calculating the effective sample size for reaching an accurate 
conclusion. Use of a statistically incorrect sample size may lead to inadequate results in both clinical and laboratory studies as well as resulting in 
time loss, cost, and ethical problems. This review holds two main aims. The first aim is to explain the importance of sample size and its relationship 
to effect size (ES) and statistical significance. The second aim is to assist researchers planning to perform sample size estimations by suggesting and 
elucidating available alternative software, guidelines and references that will serve different scientific purposes. 
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Introduction

Statistical analysis is a crucial part of a research. A 
scientific study must include statistical tools in the 
study, beginning from the planning stage. Devel-
oped in the last 20-30 years, information technol-
ogy, along with evidence-based medicine, in-
creased the spread and applicability of statistical 
science. Although scientists have understood the 
importance of statistical analysis for researchers, a 
significant number of researchers admit that they 
lack adequate knowledge about statistical con-
cepts and principles (1). In a study by West and Fi-
calora, more than two-thirds of the clinicians em-
phasized that “the level of biostatistics education 
that is provided to the medical students is not suf-
ficient” (2). As a result, it was suggested that statis-
tical concepts were either poorly understood or 
not understood at all (3,4). Additionally, intention-

ally or not, researchers tend to draw conclusions 
that cannot be supported by the actual study data, 
often due to the misuse of statistics tools (5). As a 
result, a large number of statistical errors occur af-
fecting the research results.

Although there are a variety of potential statistical 
errors that might occur in any kind of scientific re-
search, it has been observed that the sources of er-
ror have changed due to the use of dedicated soft-
ware that facilitates statistics in recent years. A sum-
mary of main statistical errors frequently encoun-
tered in scientific studies is provided below (6-13):

•	 Flawed and inadequate hypothesis;
•	 Improper study design;
•	 Lack of adequate control condition/group;
•	 Spectrum bias;
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•	 Overstatement of the analysis results;
•	 Spurious correlations;
•	 Inadequate sample size;
•	 Circular analysis (creating bias by selecting the 

properties of the data retrospectively);
•	 Utilization of inappropriate statistical studies 

and fallacious bending of the analyses;
•	 p-hacking (i.e. addition of new covariates post 

hoc to make P values significant);
•	 Excessive interpretation of limited or insignifi-

cant results (subjectivism);
•	 Confusion (intentionally or not) of correlations, 

relationships, and causations;
•	 Faulty multiple regression models;
•	 Confusion between P value and clinical signifi-

cance; and
•	 Inappropriate presentation of the results and 

effects (erroneous tables, graphics, and figures).

Relationship among sample size, power, 
P value and effect size

In this review, we will concentrate on the problems 
associated with the relationships among sample 
size, power, P value, and effect size (ES). Practical 
suggestions will be provided whenever possible. 

In order to understand and interpret the sample 
size, power analysis, effect size, and P value, it is 
necessary to know how the hypothesis of the 
study was formed. It is best to evaluate a study for 
Type I and Type II errors (Figure 1) through consid-
eration of the study results in the context of its hy-
potheses (14-16). 

A statistical hypothesis is the researcher’s best 
guess as to what the result of the experiment will 
show. It states, in a testable form the proposition 
the researcher plans to examine in a sample to be 
able to find out if the proposition is correct in the 
relevant population. There are two commonly 
used types of hypotheses in statistics. These are 
the null hypothesis (H0) and the alternative (H1) 
hypothesis. Essentially, the H1 is the researcher’s 
prediction of what will be the situation of the ex-
perimental group after the experimental treat-
ment is applied. The H0 expresses the notion that 
there will be no effect from the experimental 
treatment.

Prior to the study, in addition to stating the hy-
pothesis, the researcher must also select the alpha 
(α) level at which the hypothesis will be declared 
“supported”. The α represents how much risk the 
researcher is willing to take that the study will con-
clude H1 is correct when (in the full population) it 

Figure 1. Illustration of Type I and Type II errors.
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is not correct (and thus, the null hypothesis is real-
ly true). In other words, alpha represents the prob-
ability of rejecting H0 when it actually is true. 
(Thus, the researcher has made an error by report-
ing that the experimental treatment makes a dif-
ference, when in fact, in the full population, that 
treatment has no effect.)

The most common α level chosen is 0.05, meaning 
the researcher is willing to take a 5% chance that a 
result supporting the hypothesis will be untrue in 
the full population. However, other alpha levels 
may also be appropriate in some circumstances. 
For pilot studies, α is often set at 0.10 or 0.20. In 
studies where it is especially important to avoid 
concluding a treatment is effective when it actual-
ly is not, the alpha may be set at a much lower val-
ue; it might be set at 0.001 or even lower. Drug 
studies are examples for studies that often set the 
alpha at 0.001 or lower because the consequences 
of releasing an ineffective drug can be extremely 
dangerous for patients.

Another probability value is called “the P value”. 
The P value is simply the obtained statistical prob-
ability of incorrectly accepting the alternate hy-
pothesis. The P value is compared to the alpha val-
ue to determine if the result is “statistically signifi-
cant”, meaning that with high probability the re-
sult found in the sample will also be true in the full 
population. If the P value is at or lower than alpha, 
H1 is accepted. If it is higher than alpha, the H1 is 
rejected and H0 is accepted instead.

There are actually two types of errors: the error of 
accepting H1 when it is not true in the population; 
this is called a Type I error; and is a false positive. 
The alpha defines the probability of a Type I error. 
Type I errors can happen for many reasons, from 
poor sampling that results in an experimental 
sample quite different from the population, to 
other mistakes occurring in the design stage or 
implementation of the research procedures. It is 
also possible to make an erroneous decision in the 
opposite direction; by incorrectly rejecting H1 and 
thus wrongly accepting H0. This is called a Type II 
error (or a false negative). The β defines the proba-
bility of a Type II error. The most common reason 
for this type of error is small sample size, especially 

when combined with moderately low or low ef-
fect sizes. Both small sample sizes and low effect 
sizes reduce the power in the study.

Power, which is the probability of rejecting a false 
null hypothesis, is calculated as 1-β (also expressed 
as “1 - Type II error probability”). For a Type II error 
of 0.15, the power is 0.85. Since reduction in the 
probability of committing a Type II error increases 
the risk of committing a Type I error (and vice ver-
sa), a delicate balance should be established be-
tween the minimum allowed levels for Type I and 
Type II errors. The ideal power of a study is consid-
ered to be 0.8 (which can also be specified as 80%) 
(17). Sufficient sample size should be maintained 
to obtain a Type I error as low as 0.05 or 0.01 and a 
power as high as 0.8 or 0.9.

However, when power value falls below < 0.8, one 
cannot immediately conclude that the study is to-
tally worthless. In parallel with this, the concept of 
“cost-effective sample size” has gained impor-
tance in recent years (18).

Additionally, the traditionally chosen alpha and 
beta error limits are generally arbitrary and are be-
ing used as a convention rather than being based 
on any scientific validity. Another key issue for a 
study is the determination, presentation and dis-
cussion of the effect size of the study, as will be 
discussed below in detail.

Although increasing the sample size is suggested 
to decrease the Type II errors, it will increase the 
cost of the project and delay the completion of 
the research activities in a foreseen period of time. 
In addition, it should not be forgotten that redun-
dant samples may cause ethical problems (19,20). 

Therefore, determination of the effective sample 
size is crucial to enable an efficient study with high 
significance, increasing the impact of the out-
come. Unfortunately, information regarding sam-
ple size calculations are not often provided by clin-
ical investigators in most diagnostic studies (21,22).

Calculation of the sample size

Different methods can be utilized before the onset 
of the study to calculate the most suitable sample 
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size for the specific research. In addition to manual 
calculation, various nomograms or software can 
be used. The Figure 2 illustrates one of the most 
commonly used nomograms for sample size esti-
mation using effect size and power (23). 

Although manual calculation is preferred by the 
experts of the subject, it is a bit complicated and 
difficult for the researchers that are not statistics 
experts. In addition, considering the variety of the 
research types and characteristics, it should be 
noted that a great number of calculations will 
be required with too many variables (Table 1) 
(16,24-30). 

In recent years, numerous software and websites 
have been developed which can successfully cal-
culate sample size in various study types. Some of 
the important software and websites are listed in 
Table 2 and are evaluated based both on the re-
marks stated in the literature and on our own ex-
perience, with respect to the content, ease of use, 
and cost (31,32). G-Power, R, and Piface stand out 
among the listed software in terms of being free-
to use. G-Power is a free-to use tool that be used 
to calculate statistical power for many different t-
tests, F-tests, χ2 tests, z-tests and some exact tests. 

Figure 2. Nomogram for sample size and power, for comparing 
two groups of equal size. Gaussian distributions assumed. Stan-
dardized difference (effect size) and aimed power values are 
initially selected on the nomogram. The line connecting these 
values cross the significance level region of the nomogram. The 
intercept at the appropriate significance value presents the re-
quired sample size for the study. In the above example, for ef-
fect size = 1, power = 0.8 and alpha value = 0.05, the sample size 
is found to be 30. (Adapted from reference 16).

Table 1. Sample size calculation formulas for some research methods (according to reference 17-23)

Study type Formulas Explanations

Proportion in survey type of 
studies

N = 
Zα/2 × P × (1 – p) × D 2

2E
N - sample size

P - prevalence or proportion of event

E - precision (or margin of error) with which a 
researcher want to measure something

D - design effect reflects the sampling design 
used in the survey type of study. This is 1 for 
simple random sampling and higher values 
(usually 1 to 2) for other designs such as 
stratified, systematic, cluster random sampling

Zα/2  - 1.96 for alpha 0.05

Group mean N = Zα/2 s  /d2 2 2 s - standard deviation obtained from previous 
study, or pilot study

d - accuracy of estimate or how close to the 
true mean

Zα/2 -1.96 for alpha 0.05
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Study type Formulas Explanations

Two means N = 
2

22

rd

(r + 1)(Zα/2 + Z1–β)  σ 
r = n1/n2 - the ratio of sample size

σ - pooled standard deviation

d - difference of means of 2 groups

Z1-β - 0.84 for power 0.80

Zα/2 -1.96 for alpha 0.05

Two proportions N = 
2(p1 – p2)

Zα/2 2p(1 – p) + Z1–β p1(1 – p1)p2
Zα/2 -1.96 for alpha 0.05

Z1-β - 0.84 for power 0.80

p1 and p2 - proportion of event of interest 
(outcome) for group I and group II

p - (p1+p2) / 2

Odds ratio N = 
2

2 2(Zα/2 + Z1 – β)

r(InOR)  [ p(1 – p)]

(1 + r) Odds Ratio = OR =
P1(1 – P2)

P2(1 – P1)

p1 and p2 - proportion of event of interest 
(outcome) for group I and group II,

p =
(P1 + P2)

2

Zα/2 -1.96 for alpha 0.05

Z1-β - 0.84 for power 0.80

Correlation coefficient N = 
2(Zα/2 + Z1 – β)

1/4[log((1 + r) / (1 – r))]
+ 4 r - correlation between 2

Zα/2 -1.96 for alpha 0.05

Z1-β - 0.84 for power 0.80

Diagnostic prognostic studies 
(ROC) analysis N = 

2

2(Zσ/2 V(AUC)

d   or  
AUC - area under the curve

N (positive) = 
2

2

L

G(1–    )  α
2

TPF(1 – TPF)

N (negative) = 
2

2

L

G(1–    )  α
2

FPF(1 – FPF)

L - desired width of one half of the confidence 
interval

G(1-α/2) – 1 - α/2 percentile of the standard 
normal distribution and α is the desired 
confidence level of the estimate

TPF - true positive fraction, sensitivity

FPF - false positive fraction

TNF - true negative fraction, specificity

Table 1. Continued
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Study type Formulas Explanations

Adequate sensitivity/specificity N = 
2

2

d

Z  α
2

P(1 – P)
P - expected sensitivity

D - allowable error

Zα/2 -1.96 for alpha 0.05

Questionnaire (Survey) N = 

p(1 – p) × Z2

2e

p(1 – p) × Z2

2ne
1 +

      or

N - sample size

N = 
ln(1 – p)

ln(1 – Power)
n - population size

p - population proportion

e - margin of error (percentage in decimal 
form)

z - z-score

Programs Performance User 
Friendly

Freely 
available Website

G*Power *** *** Yes http://www.gpower.hhu.de 

PS ** *** Yes http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize 

Piface ** *** Yes https://homepage.divms.uiowa.edu/~rlenth/Power/index.
html 

PASS **** *** No https://www.ncss.com/software/pass 

nQuery *** *** No https://www.statsols.com/nquery-sample-size-and-power-
calculation-for-successful-clinical-trials 

R packages  

 pwr *** ** Yes https://cran.r-project.org/web/packages/pwr 

 TrialSize *** ** Yes https://cran.r-project.org/web/packages/TrialSize 

 PowerUpR *** ** Yes https://cran.r-project.org/web/packages/PowerUpR 

 powerSurvEpi *** ** Yes https://CRAN.R-project.org/package=powerSurvEpi 

SAS (PROC POWER) **** *** No https://support.sas.com/documentation/cdl/en/statug/63033/
HTML/default/viewer.htm#power_toc.htm 

SPSS (SamplePower) *** *** No https://www-01.ibm.com/marketing/iwm/iwmdocs/tnd/data/
web/en_US/trialprograms/U741655I36057W80.html 

STATA (power) **** *** No https://www.stata.com/features/power-and-sample-size/ 

Medcalc * **** No https://www.medcalc.org/ 

Minitab ** *** No https://www.minitab.com/en-us/ 

Table 2. Software and websites that can be used for calculation of sample size and/or power analysis

Table 1. Continued

http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize 
https://homepage.divms.uiowa.edu/~rlenth/Power/index.html 
https://homepage.divms.uiowa.edu/~rlenth/Power/index.html 
https://www.statsols.com/nquery-sample-size-and-power-calculation-for-successful-clinical-trials 
https://www.statsols.com/nquery-sample-size-and-power-calculation-for-successful-clinical-trials 
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Programs Performance User 
Friendly

Freely 
available Website

Systat *** **** No https://systatsoftware.com/ 

Statistica *** *** No http://www.statsoft.com/Products/STATISTICA-Features 

Microsoft Excel  

 PowerUp ** *** Yes http://www.causalevaluation.org/power-analysis.html 

     XLSTAT *** *** No https://www.xlstat.com/en/ 

GenStat ** *** No https://genstat.kb.vsni.co.uk/videos/

Websites-Online  

Power and Sample Size ** *** Yes  http://powerandsamplesize.com/Calculators/ 

StatCalc ** *** Yes  https://www.cdc.gov/epiinfo/user-guide/statcalc/
statcalcintro.html 

Biomath ** ** Yes http://biomath.info/power/index.html

Openepi ** *** https://www.openepi.com/SampleSize

UCSF Biostatistics ** *** Yes  https://www.stat.ubc.ca/~rollin/stats/ssize/ 

Clincalc.com * *** Yes  https://clincalc.com/stats/samplesize.aspx 

Sample Size Calculators ** *** Yes  http://www.sample-size.net/ 

Genetic Power 
Calculator *** ** Yes  http://zzz.bwh.harvard.edu/gpc/ 

OSSE, Sample Size 
Estimator  (for SNPs) * *** Yes http://osse.bii.a-star.edu.sg/

Surveys ** ** Yes
https://surveysystem.com/sscalc.html
http://www.raosoft.com/samplesize.html
https://www.surveymonkey.com/mp/sample-size-calculator/

Table 2. Continued

R is an open source programming language which 
can be tailored to meet individual statistical needs, 
by adding specific program modules called pack-
ages onto a specific base program. Piface is a java 
application specifically designed for sample size 
estimation and post-hoc power analysis. The most 
professional software is PASS (Power Analysis and 
Sample Size). With PASS, it is possible to analyse 
sample size and power for approximately 200 dif-
ferent study types. In addition, many websites pro-
vide substantial aid in calculating power and sam-
ple size, basing their methodology on scientific lit-
erature.

The sample size or the power of the study is di-
rectly related to the ES of the study. What is this 
important ES? The ES provides important informa-
tion on how well the independent variable or vari-
ables predict the dependent variable. Low ES 

means that, independent variables don’t predict 
well because they are only slightly related to the 
dependent variable. Strong ES means that, inde-
pendent variables are very good predictors of the 
dependent variable. Thus, ES is clinically important 
for evaluating how efficiently the clinicians can 
predict outcomes from the independent variables.

The scale of the ES values for different types of sta-
tistical tests conducted in different study types are 
presented in Table 3.

In order to evaluate the effect of the study and in-
dicate its clinical significance, it is very important 
to evaluate the effect size along with statistical sig-
nificance. P value is important in the statistical 
evaluation of the research. While it provides infor-
mation on presence/absence of an effect, it will 
not account for the size of the effect. For compre-

https://genstat.kb.vsni.co.uk/videos/
http://zzz.bwh.harvard.edu/gpc/
http://osse.bii.a-star.edu.sg/
https://surveysystem.com/sscalc.htm
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Test Relevant effect size
Effect Size (ES)

Small Medium Large

t-test for means Cohen’s d 0.2 0.5 0.8

Chi-Square Cohen’s ω 0.1 0.3 0.5

r x c frequency tables Cramer’s V or Phi 0.1 0.3 0.5

Correlation studies r 0.2 0.5 0.8

2 x 2 table case control Odd Ratio (OR) 1.5 2 3

2 x 2 table cohort studies Risk Ratio (RR) 2 3 4

One-way an(c)ova (regression) Cohen’s f 0.1 0.25 0.4

ANOVA  (for large sample) Eta Square ɳ2

0.01 0.06 0.14
ANOVA (for small size) Omega square Ω2

Friedman test Average spearman Rho 0.1 0.3 0.5

Multiple regression ɳ2 0.02 0.13 0.26

Coefficient of determination r2 0.04 0.25 0.64

Number needed to treat NNT 1 / Initial risk

Table 3. Thresholds for interpreting the effect size

hensive presentation and interpretation of the 
studies, both effect size and statistical significance 
(P value) should be provided and considered.

It would be much easier to understand ES through 
an example. For example, assume that independ-
ent sample t-test is used to compare total choles-
terol levels for two groups having normal distribu-
tion. Where X, SD and N stands for mean, standard 
deviation and sample size, respectively. Cohen’s d 
ES can be calculated as follows: 

Mean (X),
mmol/L

Standard 
deviation (SD)

Sample size 
(N)

Group 1 6.5 0.5 30

Group 2 5.2 0.8 30

Pooled standard deviation (SDp) = 

((SDgroup1
2) + (SDgroup2

2) / 2 = 

((0.52) + (0.82)) / 2 = 0.445 = 0.67

(Equation (Eq.) 1)

Degrees of freedom (DF) = 
(Ngroup1 – 1) + (Ngroup2 – 1) = 

(30 – 1) + (30 – 1) = 58
(Eq. 2)

t value= - 7.54, P  < 0.001

Cohen d ED = (X1 –X2)/SDp = 
(6.5-5.2) / 0.67 = 1.3 / 0.67 = 1.94

(Eq. 3)

Cohen d ES results represents: 0.8 large, 0.5 medi-
um, 0.2 small effects). The result of 1.94 indicates a 
very large effect. Means of the two groups are re-
markably different.

In the example above, the means of the two 
groups are largely different in a statistically signifi-
cant manner. Yet, clinical importance of the effect 
(whether this effect is important for the patient, 
clinical condition, therapy type, outcome, etc.) 
needs to be specifically evaluated by the experts 
of the topic. 

Power, alpha values, sample size, and ES are close-
ly related with each other. Let us try to explain this 
relationship through different situations that we 
created using G-Power (33,34).

The Figure 3 shows the change of sample size de-
pending on the ES changes (0.2, 1 and 2.5, respec-
tively) provided that the power remains constant 
at 0.8. Arguably, case 3 is particularly common in 
pre-clinical studies, cell culture, and animal studies 
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(usually 5-10 samples in animal studies or 3-12 
samples in cell culture studies), while case 2 is 
more common in clinical studies. In clinical, epide-
miological or meta-analysis studies, where the 
sample size is very large; case 1, which emphasizes 
the importance of smaller effects, is more com-
monly observed (33).

In Figure 4, case 4 exemplifies the change in pow-
er and ES values when the sample size is kept con-
stant (i.e. as low as 8). As can be seen here, in stud-
ies with low ES, working with few samples will 

mean waste of time, redundant processing, or un-
necessary use of laboratory animals.

Likewise, case 5 exemplifies the situation where 
the sample size is kept constant at 30. In this case, 
it is important to note that when ES is 1, the power 
of the study will be around 0.8. Some statisticians 
arbitrarily regard 30 as a critical sample size. How-
ever, case 5 clearly demonstrates that it is essential 
not to underestimate the importance of ES, while 
deciding on the sample size. 

Figure 3. Relationship between effect size and sample size.
P – power. ES - effect size. SS - sample size. The required sample 
size increases as the effect size decreases. In all cases, P value is 
set to 0.8. The sample sizes (SS) when ES is 0.2, 1, or 2.5; are 788, 
34 and 8, respectively. The graphs at the bottom represent the 
influence of change in the sample size on the power.

Case  1:          P = 0.8,     ES = 0.2,     SS = 788

Case  3:          P = 0.8,     ES = 2.5,     SS = 8

Case  2:          P = 0.8,     ES = 1,     SS = 34
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Figure 4. Relationship between effect size and power. Two different cases are schematized where the sample size is kept constant 
either at 8 or at 30. When the sample size is kept constant, the power of the study decreases as the effect size decreases. When the 
effect size is 2.5, even 8 samples are sufficient to obtain power = ~0.8. When the effect size is 1, increasing sample size from 8 to 30 
significantly increases the power of the study. Yet, even 30 samples are not sufficient to reach a significant power value if effect size 
is as low as 0.2.

Especially in recent years, where clinical signifi-
cance or effectiveness of the results has out-
stripped the statistical significance; understanding 
the effect size and power has gained tremendous 
importance (35–38).

Preliminary information about the hypothesis is 
eminently important to calculate the sample size 
at intended power. Usually, this is accomplished by 
determining the effect size from the results of a 
previous study or a preliminary study. There are 
software available which can calculate sample size 
using the effect size 

We now want to focus on sample size and power 
analysis in some of the most common research ar-
eas. 

Determination of sample size in 
pre-clinical studies

Animal studies are the most critical studies in 
terms of sample size. Especially due to ethical con-
cerns, it is vital to keep the sample size at the low-
est sufficient level. It should be noted that, animal 
studies are radically different from human studies 
because many animal studies use inbred animals 
having extremely similar genetic background. 
Thus, far fewer animals are needed in the research 
because genetic differences that could affect the 
study results are kept to a minimum (39,40). 

Consequently, alternative sample size estimation 
methodologies were suggested for each study 
type (41-44). If the effect size is to be determined 
using the results from previous or preliminary 
studies, sample size estimation may be performed 
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using G-Power. In addition, Table 4 may also be 
used for easy estimation of the sample size (40). 

In addition to sample size estimations that may be 
computed according to Table 4, formulas stated in 
Table 1 and the websites mentioned in Table 2 
may also be utilized to estimate sample size in ani-
mal studies. Relying on previous studies pose cer-
tain limitations since it may not always be possible 
to acquire reliable “pooled standard deviation” 
and “group mean” values. 

Based on acceptable range of the degrees of free-
dom (DF), the DF in formulas are replaced with the 
minimum (10) and maximum (20). For example, in 
an experimental animal study where the use of 3 
investigational drugs are tested minimum number 
of animals that will be required: N = (10/3)+1 = 4.3; 
rounded up to 5 animals / group, total sample size 
= 5 x 3 = 15 animals. Maximum number of animals 
that will be required: N = (20/3)+1 = 7.7; rounded 
down to 7 animals / group, total sample size = 7 x 
3 = 21 animals.

In conclusion, for the recommended study, 5 to 7 
animals per group will be required. In other words, 
a total of 15 to 21 animals will be required to keep 
the DF within the range of 10 to 20. 

In a compilation where Ricci et al. reviewed 15 
studies involving animal models, it was noted that 
the sample size used was 10 in average (between 
6 and 18), however, no formal power analysis was 
reported by any of the groups. It was striking that, 
all studies included in the review have used para-
metric analysis without prior normality testing (i.e. 
Shapiro-Wilk) to justify their statistical methodolo-
gy (46).

Sample 
size

80%
one-sided

90%
one-sided

80%
two-sided

90%
two-sided

4 2 2.35 2.38 2.77

5 1.72 2.03 2.02 2.35

6 1.54 1.82 1.8 2.08

7 1.41 1.66 1.63 1.89

8 1.31 1.54 1.51 1.74

9 1.23 1.44 1.41 1.63

10 1.16 1.36 1.32 1.53

12 1.05 1.23 1.2 1.39

14 0.97 1.14 1.1 1.27

16 0.9 1.06 1.02 1.18

18 0.85 1 0.96 1.11

20 0.8 0.94 0.91 1.05

22 0.76 0.9 0.86 1

24 0.73 0.86 0.83 0.96

26 0.7 0.82 0.79 0.92

28 0.67 0.79 0.76 0.88

30 0.65 0.76 0.74 0.85

32 0.63 0.74 0.71 0.82

34 0.61 0.72 0.69 0.8

Study design 
(Statistical test)

Minimum 
sample size / 
group

Maximum 
sample size / 
group

Group comparison 
(ANOVA) = (10 / k) + 1 = (20 / k) + 1

One group, repeated 
measures (one within 
factor, repeated 
measures ANOVA)

= 10 (r - 1) + 1a,b = 20 (r - 1) + 1a,b

Group comparison, 
repeated measures 
(one-between, one 
within factor, repeated 
measures ANOVA)

= (10 / kr) + 1b = (20 / kr) + 1b

k - number of groups. N - number of subjects per group. 
r - number of repeated measurements. a = N, because only 
one group is involved, b - must be multiplied by r whenever 
the experiment involves sacrificing the animals at each 
measurement.

Table 4. Cohen’s d for 4–34 samples per group assuming 0.8 
and 0.9 power, a 0.05 significance level and a one-sided or two-
sided test (Simplified from reference 40)

Arifin et al. proposed simpler formulas (Table 5) to 
calculate sample size in animal studies (45). In 
group comparison studies, it is possible to calcu-
late the sample size as follows: N = (DF/k)+1  (Eq. 4).

Table 5. Sample size formulas for different types of group com-
parison studies (According to reference 45)
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It is noteworthy that, unnecessary animal use 
could be prevented by keeping the power at 0.8 
and selecting one-tailed analysis over two-tailed 
analysis with an accepted 5% risk of making type I 
error as performed in some pharmacological stud-
ies, reducing the number of required animals by 
14% (47).

Neumann et al. proposed a group-sequential de-
sign to minimize animal use without a decrease in 
statistical power. In this strategy, researchers start-
ed the experiments with only 30% of the animals 
that were initially planned to be included in the 
study. After an interim analysis of the results ob-
tained with 30% of the animals, if sufficient power 
is not reached, another 30% is included in the 
study. If results from this initial 60% of the animals 
provide sufficient statistical power, then the rest of 
the animals are excused from the study. If not, the 
remaining animals are also included in the study. 
This approach was reported to save 20% of the an-
imals in average, without leading to a decrease in 
statistical power (48). 

Alternative sample size estimation strategies are 
implemented for animal testing in different coun-
tries. As an example, a local authority in south-
western Germany recommended that, in the ab-
sence of a formal sample size estimation, less than 
7 animals per experimental group should be in-
cluded in pilot studies and the total number of ex-
perimental animals should not exceed 100 (48). 

On the other hand, it should be noted that, for a 
sample size of 8 to 10 animals per group, statistical 
significance will not be accomplished unless a 
large or very large ES (> 2) is expected (45,46). This 
problem remains as an important limitation for an-
imal studies. Software like G-Power can be used 
for sample size estimation. In this case, results ob-
tained from a previous or a preliminary study will 
be required to be used in the calculations. Howev-
er, even when a previous study is available in liter-
ature, using its data for a sample size estimation 
will still pose an uncertainty risk unless a clearly 
detailed study design and data is provided in the 
publication. Although researchers suggested that 
reliability analyses could be performed by meth-
ods such as Markov Chain Monte Carlo, further re-
search is needed in this regard (49). 

The output of the joint workshop held by The Na-
tional Institutes of Health (NIH), Nature Publishing 
Group and Science; “Principles and Guidelines for 
Reporting Preclinical Research” that was published 
in 2014, has since been acknowledged by many or-
ganizations and journals. This guide has shed sig-
nificant light on studies using biological materials, 
involving animal studies, and handling image-
based data (50).

Another important point regarding animal studies 
is the use of technical repetition (pseudo replica-
tion) instead of biological repetition. Technical 
repetition is a specific type of repetition where the 
same sample is measured multiple times, aiming 
to probe the noise associated with the measure-
ment method or the device. Here, no matter how 
many times the same sample is measured, the ac-
tual sample size will remain the same. Let us as-
sume a research group is investigating the effect 
of a therapeutic drug on blood glucose level. If the 
researchers measure the blood glucose level of 3 
mice receiving the actual treatment and 3 mice re-
ceiving placebo, this would be a biological repeti-
tion. On the other hand, if the blood glucose level 
of a single mouse receiving the actual treatment 
and the blood glucose level of a single mouse re-
ceiving placebo are each measured 3 times, this 
would be technical repetition. Both designs will 
provide 6 data points to calculate P value, yet the 
P value obtained from the second design would 
be meaningless since each treatment group will 
only have one member (Figure 5). Multiple meas-
urements on single mice are pseudo replication; 
therefore do not contribute to N. No matter how 
ingenious, no statistical analysis method can fix in-
correctly selected replicates at the post-experi-
mental stage; replicate types should be selected 
accurately at the design stage. This problem is a 
critical limitation, especially in pre-clinical studies 
that conduct cell culture experiments. It is very im-
portant for critical assessment and evaluation of 
the published research results (51). This issue is 
mostly underestimated, concealed or ignored. It is 
striking that in some publications, the actual sam-
ple size is found to be as low as one. Experiments 
comparing drug treatments in a patient-derived 
stem cell line are specific examples for this situa-
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tion. Although there may be many technical repli-
cations for such experiments and the experiment 
can be repeated several times, the original patient 
is a single biological entity. Similarly, when six 
metatarsals are harvested from the front paws of a 
single mouse and cultured as six individual cul-
tures, another pseudo replication is practiced 
where the sample size is actually 1, instead of 6 
(52). Lazic et al. suggested that almost half of the 
studies (46%) had mistaken pseudo replication 
(technical repeat) for genuine replication, while 
32% did not provide sufficient information to ena-
ble evaluation of appropriateness of the sample 
size (53,54). 

In studies providing qualitative data (such as elec-
trophoresis, histology, chromatography, electron 
microscopy), the number of replications (“number 
of repeats” or “sample size”) should explicitly be 
stated. 

Especially in pre-clinical studies, standard error of 
the mean (SEM) is frequently used instead of SD in 
some situations and by certain journals. The SEM is 
calculated by dividing the SD by the square root of 
the sample size (N). The SEM will indicate how vari-
able the mean will be if the whole study is repeat-
ed many times. Whereas the SD is a measure of 
how scattered the scores within a set of data are. 

Since SD is usually higher than SEM, researchers 
tend to use SEM. While SEM is not a distribution 
criterion; there is a relation between SEM and 95 % 
confidence interval (CI). For example, when N = 3, 
95% CI is almost equal to mean ± 4 SEM, but when 
N ≥ 10; 95% CI equals to mean ± 2 SEM. Standard 
deviation and 95% CI can be used to report the 
statistical analysis results such as variation and 
precision on the same plot to demonstrate the dif-
ferences between test groups (52,55). 

Given the attrition and unexpected death risk of 
the laboratory animals during the study, the re-
searchers are generally recommended to increase 
the sample size by 10% (56). 

Sample size calculation for some genetic 
studies 

Sample size is important for genetic studies as 
well. In genetic studies, calculation of allele fre-
quencies, calculation of homozygous and hete-
rozygous frequencies based on Hardy-Weinberg 
principle, natural selection, mutation, genetic drift, 
association, linkage, segregation, haplotype analy-
sis are carried out by means of probability and sta-
tistical models (57-62). While G-Power is useful for 
basic statistics, substantial amount of analyses can 

Figure 5. Technical vs biological repeat.

Biological Replications Tehnical Repeat (Pseudoreplication)

Control ControlTest Test

N = 3 N = 3 N = 1 N = 1
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be conducted using genetic power calculator 
(http://zzz.bwh.harvard.edu/gpc/) (61,62). This cal-
culator, which provides automated power analysis 
for variance components (VC) quantitative trait lo-
cus (QTL) linkage and association tests in sibships, 
and other common tests, is significantly effective 
especially for genetics studies analysing complex 
diseases. 

Case-control association studies for single nucleo-
tide polymorphisms (SNPs) may be facilitated us-
ing OSSE web site (http://osse.bii.a-star.edu.sg/). 
As an example, let us assume the minor allele fre-
quencies of an SNP in cases and controls are ap-
proximately 15% and 7% respectively. To have a 
power of 0.8 with 0.05 significance, the study is re-
quired to include 239 samples both for cases and 
controls, adding up to 578 samples in total (Figure 
6).

Hong and Park have proposed tables and graphics 
in their article for facilitating sample size estima-
tion (57). With the assumption of 5% disease prev-
alence, 5% minor allele frequency and complete 
linkage disequilibrium (D’ = 1), the sample size in a 
case-control study with a single SNP marker, 1:1 
case-to-control ratio, 0.8 statistical power, and 5% 
type I error rate can be calculated according to the 

genetic models of inheritance (allelic, additive, 
dominant, recessive, and co-dominant models) 
and the odd ratios of heterozygotes/rare homozy-
gotes (Table 6). As demonstrated by Hong and 
Park among all other types of inheritance, domi-
nant inheritance requires the lowest sample size 

Figure 6. Interface of Online Sample Size Estimator (OSSE) Tool. (Available at: http://osse.bii.a-star.edu.sg/).

Genetic Model

ORhet/ORhomo ratio

1.3/1 1.5/1 2/3 2.5/4

Sample size

Allelic 1974 789 248 134

Dominant 606 258 90 53

Co-Dominant 2418 964 301 161

Recessive 20,294 8390 2776 1536

Effective sample sizes are calculated according to the 
following assumptions: minor allele frequency is 5%, disease 
prevalence is 5%, there is complete linkage disequilibrium (D’ 
= 1), case-to-control ratio is 1:1, and the type I error rate is 5% 
for single marker analysis (57).

Table 6. Number of cases required to achieve 0.8 power ac-
cording to the different genetic models and various odd ratios 
of heterozygotes/rare homozygotes (ORhet/ORhomo) in case-
control studies

http://osse.bii.a-star.edu.sg/
http://osse.bii.a-star.edu.sg/
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to achieve 0.8 statistical power. Whereas, testing a 
single SNP in a recessive inheritance model re-
quires a very large sample size even with a high 
homozygote ratio, that is practically challenging 
with a limited budget (57). The Table 6 illustrates 
the difficulty in detecting a disease allele following 
a recessive mode of inheritance with moderate 
sample size.

Sample size and power analyses in 
clinical studies

In clinical research, sample size is calculated in line 
with the hypothesis and study design. The cross-
over study design and parallel study design apply 
different approaches for sample size estimation. 
Unlike pre-clinical studies, a significant number of 
clinical journals necessitate sample size estimation 
for clinical studies.

The basic rules for sample size estimation in clini-
cal trials are as follows (63,64):

•	 Error level (alpha): It is generally set as < 0.05. 
The sample size should be increased to com-
pensate for the decrease in the effect size.

•	 Power must be > 0.8: The sample size should 
be increased to increase the power of the study. 
The higher the power, the lower the risk of 
missing an actual effect.

•	 The clinical significance: There is an inverse 
correlation between the difference in the effect 
size and the required sample size. To detect 
smaller differences in the clinical effect, larger 
sample size is needed and vice versa. The clini-
cal significance should be evaluated with effect 
size, confidence interval, and P value (Figure 7) 
(65).

•	 Similarity and equivalence: The sample size 
required demonstrating similarity and equiva-
lence is very low.

Sample size estimation can be performed manual-
ly using the formulas in Table 1 as well as software 
and websites in Table 2 (especially by G-Power). 
However, all of these calculations require prelimi-
nary results or previous study outputs regarding 
the hypothesis of interest. Sample size estimations 
are difficult in complex or mixed study designs. In 
addition: a) unplanned interim analysis, b) planned 
interim analysis and

Figure 7. The relationship among clinical significance, statistical significance, power and effect size. In the example above, in order to 
provide a clinically significant effect, a treatment is required to trigger at least 0.5 mmol/L decreases in cholesterol levels. Four differ-
ent scenarios are given for a candidate treatment, each having different mean total cholesterol change and 95% confidence interval. 
ES - effect size. N – number of participant. Adapted from reference 65.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Clinical Decision Limits
(0.5 mmol/L)

Total Cholesterol Alternation (mmol/L)
0

Not statistically significant, not clinically relevant
N = 45, P > 0.05, power > 0.8, ES < 0.2

Not statistically significant, maybe clinically relevant
N = 5, P > 0.05, power < 0.8, ES > 1 (Type I Error)

Statistically significant, not clinically relevant
N = 45, P < 0.05, power > 0.8, ES < 0.2

Statistically significant, clinically relevant
N = 45, P < 0.05, power > 0.8, ES > 1
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c) adjustments for common variables may be re-
quired for sample size estimation.

In addition, post-hoc power analysis (possible with 
G-Power, PASS) following the study significantly 
facilitates the evaluation of the results in clinical 
studies.  

A number of high-quality journals emphasize that 
the statistical significance is not sufficient on its 
own. In fact, they would require evaluation of the 
results in terms of effect size and clinical effect as 
well as statistical significance.

In order to fully comprehend the effect size, it 
would be useful to know the study design in detail 
and evaluate the effect size with respect to the 
type of the statistical tests conducted as provided 
in Table 3.

Hence, the sample size is one of the critical steps in 
planning clinical trials, and any negligence or 
shortcomings in its estimate may lead to rejection 
of an effective drug, process, or marker. Since sta-
tistical concepts have crucial roles in calculating 
the sample size, sufficient statistical expertise is of 
paramount importance for these vital studies.

Sample size, effect size and power 
calculation in laboratory studies

In clinical laboratories, software such as G-Power, 
Medcalc, Minitab, and Stata can be used for group 
comparisons (such as t-tests, Mann Whitney U, Wil-
coxon, ANOVA, Friedman, Chi-square, etc.), correla-
tion analyses (Pearson, Spearman, etc.) and regres-
sion analyses. 

Effect size that can be calculated according to the 
methods mentioned in Table 3 is important in clin-
ical laboratories as well. However, there are addi-
tional important criteria that must be considered 
while investigating differences or relationships. Es-
pecially the guidelines (such as CLSI, RiliBÄK, CLIA, 
ISO documents) that were established according 
to many years of experience, and results obtained 
from biological variation studies provide us with 
essential information and critical values primarily 
on effect size and sometimes on sample size. 

Furthermore, in addition to the statistical signifi-
cance (P value interpretation), different evaluation 
criteria are also important for the assessment of 
the effect size. These include precision, accuracy, 
coefficient of variation (CV), standard deviation, 
total allowable error, bias, biological variation, and 
standard deviation index, etc. as recommended 
and elaborated by various guidelines and refer-
ence literature (66-70). 

In this section, we will assess sample size, effect 
size, and power for some analysis types used in 
clinical laboratories.

Sample size in method and device 
comparisons 

Sample size is a critical determinant for Linear, 
Passing Bablok, and Deming regression studies 
that are predominantly being used in method 
comparison studies. Sample size estimations for 
the Passing-Bablok and Deming method compari-
son studies are exemplified in Table 7 and Table 8 
respectively. As seen in these tables, sample size 
estimations are based on slope, analytical preci-
sion (% CV), and range ratio (c) value (66-67). These 
tables might seem quite complicated for some re-
searchers that are not familiar with statistics. 
Therefore, in order to further simplify sample size 
estimation; reference documents and guidelines 
have been prepared and published. As stated in 
CLSI EP09-A3 guideline, the general recommenda-
tion for the minimum sample size for validation 
studies to be conducted by the manufacturer is 
100; while the minimum sample size for user-con-
ducted verification is 40 (68). In addition, these 
documents clearly explain the requirements that 
should be considered while collecting the samples 
for method/device comparison studies. For in-
stance, samples should be homogeneously dis-
persed covering the whole detection range. 
Hence, it should be kept in mind that randomly se-
lected 40-100 sample will not be sufficient for im-
peccable method comparison (68).

Additionally, comparison studies might be carried 
out in clinical laboratories for other purposes; such 
as inter-device, where usage of relatively few sam-
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%CV
Slope*

1.00-1.02 1.02-1.04 1.04-1.06 1.06-1.08 1.08-1.10 1.10-1.12 1.12-1.15 1.15-1.2

Range 
ratio

1.00-0.98 0.98-0.96 0.96-0.94 0.94-0.93 0.93-0.91 0.91-0.89 0.89-0.85 0.85-0.83

Proposed Sample Sizes

∞ 2 > 90 30 < 30 < 30 < 30 < 30 < 30 < 30

  5 > 90 > 90 80 45 35 < 30 < 30 < 30

  7 > 90 > 90 > 90 90 60 45 30 < 30

  10 > 90 > 90 > 90 > 90 > 90 80 55 35

  13 > 90 > 90 > 90 > 90 > 90 > 90 80 50

4 2 > 90 90 40 < 30 < 30 < 30 < 30 < 30

  5 > 90 > 90 > 90 > 90 85 65 40 < 30

  7 > 90 > 90 > 90 > 90 > 90 > 90 80 45

  10 > 90 > 90 > 90 > 90 > 90 > 90 > 90 80

2 2 > 90 > 90 > 90 75 50 35 < 30 < 30

  5 > 90 > 90 > 90 > 90 > 90 > 90 > 90 80

Slope - the steepness of a line and the intercept indicates the location where it intersects an axis. The greater the magnitude of the 
slope, the steeper the line and the greater the rate of change. The formula for the regression line in method comparison study is y 
= ax + b, where a is the slope of the line and b is the y-intercept. The range ratio (concentration of the upper limit / concentration of 
the lower limit). % CV - coefficient of variation (analytical precision).  *Sample size values are proposed for respective slope ranges. 
i.e. for range ratio: 4, CV: 2%, slope range: 1.00–1.02 or 1.00–0.98 requires > 90 samples; whereas slope range: 1.04-1.06 or 0.96-0.94 
requires 40 samples. Note: In this example, similar % CV values are assumed for the two methods compared. For methods having 
dissimilar % CV values, the researcher should refer to the reference 66.

Table 7. Proposed sample size sizes for Passing Bablok regression, (power at least 0.8, alpha = 0.05) (Simplified from reference 66)

Standardized Δ value 
for slope

In Deming regression
Range ratio 1.25 1.5 2 2.5 3 4 5 8 10

Proposed Sample Size

1 5104 1575 567 343 256 182 150 116 108

2 1276 410 152 90 69 48 39 32 27

3 585 185 70 42 32 25 20 16 15

4 325 104 41 27 20 15 13 11 ≤ 10

In weighted Deming 
Regression

Range ratio 2 2.5 3 4 5 8 10 25 50

Proposed Sample Size

1 544 320 226 150 114 75 64 45 37

2 144 82 61 40 33 23 20 18 15

3 66 42 29 22 17 ≤ 10 ≤ 10 ≤ 10 ≤ 10

4 39 26 19 15 12 ≤ 10 ≤ 10 ≤ 10 ≤ 10

Type I error = 0.05. Power = 0.9. Standardized Δ value for slope = (Slope - 1) / CV. CV – coefficient of variation. The range ratio - 
concentration of the upper limit / concentration of the lower limit.  CV refers to the CV at the middle of the given interval (SD / 
mean of the interval for the analytes), i.e. while the required sample size is 343 for a “standardized Δ value for slope” of 1 for a range 
ratio of 2.5 in Deming regression, it is 320 in weighted Deming regression (Simplified from reference 66).

Table 8. Necessary sample sizes for test of slope deviation from 1 or intercept deviation from zero by Deming and Weighted regres-
sion analysis
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ples is suggested to be sufficient. For method 
comparison studies to be conducted using patient 
samples; sample size estimation, and power analy-
sis methodologies, in addition to the required 
number of replicates are defined in CLSI docu-
ment EP31-A-IR. The critical point here is to know 
the values of constant difference, within-run 
standard deviation,  and total sample standard de-
viation (69). While studies that compare devices  
having high analytical performance would suffice 
lower sample size; studies comparing devices with 
lower analytical performance would require high-
er sample size. 

Lu et al. used maximum allowed differences for 
calculating sample sizes that would be required in 
Bland Altman comparison studies. This type of 
sample size estimation, which is critically impor-
tant in laboratory medicine, can easily be per-
formed using Medcalc software (70).

Sample size in lot to lot variation studies 

It is acknowledged that lot-to-lot variation may in-
fluence the test results. In line with this, method 
comparison is also recommended to monitor the 
performance of the kit in use, between lot chang-
es. To aid in the sample size estimation of these 
studies; CLSI has prepared the EP26-A guideline 

“User evaluation of between-reagent lot variation; 
approved guideline”, which provides a methodol-
ogy like EP31-A-IR (71,72). 

The Table 9 presents sample size and power values 
of a lot-to-lot variation study comparing glucose 
measurements at 3 different concentrations. In this 
example, if the difference in the glucose values 
measured by different lots is > 0.2 mmol/L, > 0.58 
mmol/L and > 1.16 mmol/L at analyte concentra-
tions of 2.77 mmol/L, 8.32 mmol/L and 16.65 
mmol/L respectively, lots would be confirmed to 
be different. In a scenario where one sample is 
used for each concentration; if the lot-to-lot varia-
tion results obtained from each of the three differ-
ent concentrations are lower than the rejection 
limits (meaning that the precision values for  the 
tested lots are within the acceptance limits), then 
the lot variation is accepted to lie within the ac-
ceptance range. While the example for glucose 
measurements presented in the guideline sug-
gests that “1 sample” would be sufficient at each 
analyte concentration, it should be noted that sam-
ple size might vary according to the number to de-
vices to be tested, analytical performance results of 
the devices (i.e. precision), total allowable error, etc. 
For different analytes and scenarios (i.e. for occa-
sions where one sample/concentration is not suffi-
cient), researchers need to refer CLSI EP26-A (71).

Analyte Target concentration
(mmol/L) Cd Swrl Sr Cd/Swrl Sr/Swrl

Rejection limit
(mmol/L) Sample Size (N) Power

Glucose 2.77 0.33 0.055 0.033 6.0 0.6 0.6 x Cd 
(0.2)

1 0.955

8.32 0.83 0.11 0.08 7.5 0.75 0.7 x Cd
(0.58)

1 > 0.916

16.65 1.66 0.25 0.19 6.7 0.78 0.7 x Cd
(1.16)

1 > 0.916

Cd - critical difference is the total allowable error (TAE) according to the CLIA criteria. Sr - repeatability (within-run imprecision). Swrl 
- within-reagent lot imprecision. Note: Sr and Swrl values should be obtained from the manufacturer. Power is calculated according 
to critical difference, imprecision values and sample size as explained in detail in CLSI EP 26-A. If the lot-to-lot variation results 
obtained from three different concentrations are lower than the rejection limits when one sample is used for each concentration 
(meaning method precision of the tested lots are within the acceptance limits), then the lot variation is said to remain within the 
acceptance range. (The actual table provided in the guideline (CSLI EP26A) is of 3 pages. Since the primary aim of this paper is to 
familiarize the reader with sample size estimation methodologies in different study types; for simplification, only a glucose example 
is included in this table. For different analytes and scenarios (i.e. for occasions where one sample/concentration is not sufficient), 
researchers need to refer CLSI EP26-A.) (71).

Table 9. Sample size and power values of a lot-to-lot variation studies



https://doi.org/10.11613/BM.2021.010502 Biochem Med (Zagreb) 2021;31(1):010502 

  19

Serdar CC. et al. Sample size, power and effect size in studies

Some researchers find CLSI EP26-A and CLSI EP31 
rather complicated for estimating the sample size 
in lot-to-lot variation and method comparison 
studies (which are similar to a certain extent). They 
instead prefer to use the sample size (number of 
replicates) suggested by Mayo Laboratories. Mayo 
Laboratories decided that lot-to-lot variation stud-
ies may be conducted using 20 human samples 
where the data are analysed by Passing-Bablok re-
gression and accepted according to the following 
criteria: a) slope of the regression line will lie be-
tween 0.9 and 1.1; b) R2 coefficient of determina-
tion will be > 0.95; c) the Y-intercept of the regres-
sion line will be < 50% of the lowest reportable 
concentration, d) difference of the means between 
reagent lots will be < 10% (73).

Sample size in verification studies 

Acceptance limits should be defined before the 
verification and validation studies. These could be 
determined according to clinical cut-off values, bi-
ological variation, CLIA criteria, RiliBÄK criteria, cri-
teria defined by the manufacturer, or state of the 
art criteria. In verification studies, the “sample size” 
and the “minimum proportion of the observed 
samples required to lie within the CI limits” are 
proportional. For instance, for a 50-sample study, 
90% of the samples are required to lie within the 
CI limits for approval of the verification; while for a 
200-sample study, 93% is required (Table 10). In an 
example study whose total allowable error (TAE) is 
specified as 15%; 50 samples were measured. Re-
sults of the 46 samples (92% of all samples) lied 
within the TAE limit of 15%. Since the proportion 
of the samples having results within the 15% TAE 
limit (92% of the samples) exceeds the minimum 
proportion required to lie within the TAE limits 
(90% of the samples), the method is verified (74).

Especially in recent years, researchers tend to use 
CLSI EP15-A3 or alternative strategies relying on 
EP15-A3, for verification analyses. While the alter-
native strategies diverge from each other in many 
ways, most of them necessitate a sample size of at 
least 20 (75–78). Yet, for bias studies, especially for 
the ones involving External Quality Control mate-
rials, even lower sample sizes (i.e. 10) may be ob-

served (79). Verification still remains to be one of 
the critical problems for clinical laboratories. It is 
not possible to find a single criteria and a single ver-
ification method that fits all test methods (i.e. im-
munological, chemical, chromatographical, etc.).

While sample size for qualitative laboratory tests 
may vary according to the reference literature and 
the experimental context, CLSI EP12 recommends 
at least 50 positive and 50 negative samples, 
where 20% of the samples from each group are re-
quired to fall within cut-off value +/- 20% (80,81). 
According to the clinical microbiology validation/
verification guideline Cumitech 31A, the minimum 
number of the samples in positive and negative 
groups is 100/each group for validation studies, 
and 10/each group for verification studies (82). 

Sample size in diagnostic and prognostic 
studies

ROC analysis is the most important statistical anal-
ysis in diagnostic and prognostic studies. Although 
sample size estimation for ROC analyses might be 
slightly complicated; Medcalc, PASS, and Stata 
may be used to facilitate the estimation process. 

N Minimum percentage of the observed 
samples required to lie within the CI 

limits (%)

20 85

30 87

40 90

50 90

100 91

200 93

500 93

1000 94

N – sample size. CI – confidence interval. I.e. for a verification 
study of 20 samples, 85% of the samples (17 samples) are 
required to lie within the CI limits, whereas for a verification 
study of 100 samples, 91% of the samples (91 samples) are 
required to lie within the CI limits (74).

Table 10. Sample size estimation in method verification studies
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Before the actual size estimations, it is a prerequi-
site for the researcher to calculate potential area 
under the curve (AUC) using data from previous or 
preliminary studies. In addition, size estimation 
may also be calculated manually according to Ta-
ble 1, or using sensitivity (or TPF) and 1-specificity 
(FPF) values according to Table 11 which is adapt-
ed from CLSI EP24-A2 (83,84).

As is known, X-axis of the ROC curve is FPF, and Y-
axis is TPF. While TPF represents sensitivity, FPF 
represents 1-specificity. Utilizing Table 11, for a 
0.85 sensitivity, 0.90 specificity and a maximum al-
lowable error of 5% (L = 0.05), 196 positive and 139 
negative samples are required. For the scenarios 
not included in this table, reader should refer to 
the formulas given under “diagnostic prognostic 
studies” subsection of Table 1.

Standards for reporting of diagnostic accuracy 
studies (STARD) checklist may be followed for di-
agnostic studies. It is a powerful checklist whose 
application is explained in detail by Cohen et al. 
and Flaubaut et al. (85,86). This document sug-
gests that, readers demand to understand the an-
ticipated precision and power of the study and 
whether authors were successful in recruiting the 
sufficient number of participants; therefore it is 
critical for the authors to explain the intended 

sample size of their study and how it was deter-
mined. For this reason, in diagnostic and prognos-
tic studies, sample size and power should clearly 
be stated.

As can be seen here, the critical parameters for 
sample size estimation are AUC, specificity and 
sensitivity, and their 95% CI values. The table 12 
demonstrates the relationship of sample size with 
sensitivity, specificity, negative predictive value 
(NPV) and positive predictive value (PPV); the low-
er the sample size, the higher is the 95% CI values, 
leading to increase in type II errors (87). As can be 
seen here, confidence interval is narrowed as the 
sample size increases, leading to a decrease in 
type II errors.

Like all sample size calculations, preliminary infor-
mation is required for sample size estimations in 
diagnostic and prognostic studies. Yet, variation 

Sample size

95 % CI 
for a ratio of 0.05
(i.e. FPR = 0.05, FNR 
= 0.05, etc.)

95 % CI 
for a ratio of 0.80
(i.e. sensitivity = 0.80, 
specificity = 0.80, PPV 
= 0.80, NPV = 0.80, etc.)

20 0.00-0.25 0.56-0.94

60 0.01-0.14 0.68-0.90

100 0.02-0.11 0.71-0.87

500 0.03-0.07 0.76-0.83

1000 0.04-0.07 0.77-0.82

95% CI of the test characteristic ratios of 0.05 and 0.8 are 
selected for illustration.
Test characteristics such as sensitivity, specificity, positive 
predictive value, negative predictive value, false-positives and 
false-negatives are denoted either as percentages or ratios. To 
use a terminology similar to the original table, the term “ratio” 
is preferred here. The 95% CI is inversely proportional with the 
sample size; 95% CI is narrower with increased sample size. In 
the example here, a diagnostic study having a sensitivity of 
0.8 is provided. The 95% CI is broader (0.56–0.94) if the study 
is conducted with 20 samples, and narrower (0.71–0.87) is the 
study is conducted with 100 samples. Thus, at small sample 
sizes, only rather uncertain estimates of specificity, sensitivity, 
FPR, FNR, etc. are obtained (87).

Sensitivity or Specificity (TPF 
or 1-FPF) L N

0.80 0.05 246

0.85 0.05 196

0.90 0.05 139

0.95 0.05 73

0.70 0.10 81

0.75 0.10 73

0.80 0.10 62

0.85 0.10 49

L - desired width of one half of the confidence interval (CI), or 
maximum allowable error of the estimate. (95% CI for 0.05 and 
90% CI for 0.10). TPF - true positive fraction. FPF - false positive 
fraction. Adapted from CLSI EP24-A2, reference 83.

Table 11. Determining sample size in diagnostic studies 

Table 12. Relationship between sample size and 95% CI of a 
test characteristic (sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), ratio of false-pos-
itives (FPR) and ratio of false-negatives (FNR) etc; are ratios be-
tween 0.00–1.00)
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occurs among sample size estimates that are cal-
culated according to different reference literature 
or guidelines. This variation is especially promi-
nent depending on the specific requirements of 
different countries and local authorities.

While sample size calculations for ROC analyses 
may easily be performed via Medcalc, the method 
explained by Hanley et al. and Delong et al. may be 
utilized to calculate sample size in studies compar-
ing different ROC curves (88,89). 

Sample size for reference interval 
determination

Both IFCC working groups and the CLSI guideline 
C28-A3c offer suggestions regarding sample size 
estimations in reference interval studies (90-93). 
These references mainly suggest at least 120 sam-
ples should be included for each study sub-group 
(i.e., age-group, gender, race, etc.). In addition, the 
guideline also states that, at least 20 samples 
should be studied for verification of the deter-
mined reference intervals. 

Since extremes of the observed values may under/
over-represent the actual percentile values of a 
population in nonparametric studies, care should 
be taken not to rely solely on the extreme values 
while determining the nonparametric 95% refer-
ence interval. Reed et al. suggested a minimum 
sample size of 120 to be used for 90% CI, 146 for 
95% CI, and 210 for 99% CI (93). Linnet proposed 
that up to 700 samples should be obtained for re-
sults having highly skewed distributions (94). The 
IFCC Committee on Reference Intervals and Deci-
sion Limits working group recommends a mini-
mum of 120 reference subjects for nonparametric 
methods, to obtain results within 90% CI limits 
(90). 

Due to the inconvenience of the direct method, in 
addition to the challenges encountered using pae-
diatric and geriatric samples as well as the samples 
obtained from complex biological fluids (i.e. cere-
brospinal fluid); indirect sample size estimations 
using patient results has gained significant impor-
tance in recent years. Hoffmann method, Bhat-
tacharya method or their modified versions may 

be used for indirect determination of the refer-
ence intervals (95-101). While a specific sample size 
is not established, sample size between 1000 and 
10.000 is recommended for each sub-group. For 
samples that cannot be easily acquired (i.e. paedi-
atric and geriatric samples, and complex biologi-
cal fluids), sample sizes as low as 400 may be used 
for each sub-group (92,100).

Sample size in survey studies 

The formulations given on Table 1 and the web-
sites mentioned on Table 2 will be particularly use-
ful for sample size estimations in survey studies 
which are dependent primarily on the population 
size (101). 

Three critical aspects should be determined for 
sample size determination in survey studies:

1. Population size

2. Margin of Error (ME) is predominantly impor-
tant for survey studies. The ME expresses the 
amount of random sampling error in survey 
results. Larger margin of error would suggest 
that the poll results are less likely to reflect the 
survey results of an entire population. Table 13 
may provide a practical solution for size estima-
tion. A 5% ME means that, the actual popula-
tion value is expected to lie within survey result 
± 5%. 1-10% is selected as margin of error in 
general. The ME above 10% is not recommend-
ed. It is possible to calculate ME% using the fol-
lowing formula, ME% = 100 / √N. For instance, 
while ME% will be 31.6% for a sample size of 10 
(ME% = 100 / √10 = 31.6), it will be 3.16% for a 
sample size of 1000 (ME% = 100 / √1000 = 3.16). 
The ME above 10% is not recommended (102).

3. Confidence Interval (CI) of 95% means that, 
when the study is repeated, with 95% probabil-
ity, the same results will be obtained. Depend-
ing on the hypothesis and the study aim, confi-
dence interval may lie between 90% and 99%. 
Confidence interval below 90% is not recom-
mended.

For a given CI, sample size and ME is inversely pro-
portional; sample size should be increased in or-
der to obtain a narrower ME. On the contrary, for a 
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mined using the formula suggested in Table 14 
which is based on the prevalence value (103). It is 
unlikely to reach a sufficient power for revealing of 
uncommon problems (prevalence 0.02) at small 
sample sizes. As can be seen on the table, in the 
case of 0.02 prevalence, a sample size of 30 would 
yield a power of 0.45. In contrast, frequent prob-
lems (i.e. prevalence 0.30) were discovered with 
higher power (0.83) even when the sample size 
was as low as 5. For situations where power and 
prevalence are known, effective sample size can 
easily be estimated using the formula in Table 1.

Does big sample size always increase the 
impact of a study?

While larger sample size may provide researchers 
with great opportunities, it may create problems 
in interpretation of statistical significance and clin-
ical impact. Especially in studies with big sample 
sizes, it is critically important for the researchers 
not to rely only on the magnitude of the regres-
sion (or correlation) coefficient, and the P value. 
The study results should be evaluated together 
with the effect size, study efficiencies (i.e. basic re-
search, clinical laboratory, and clinical studies) and 
confidence interval levels. Monte Carlo simula-

Population Size

Margin of error (ME)
(for CI 95%)

Confidence Interval (CI)
(for ME 5%)

10% 5% 1% 90% 95% 99%

100 50 80 99 74 80 88

500 81 218 476 176 218 286

1000 88 278 906 215 278 400

10,000 96 370 4900 264 370 623

100,000 96 383 8763 270 383 660

1.000,000 97 384 9513 271 384 664

Sample size estimation may be performed according to the actual population size, margin of error and confidence interval. Here 
most commonly used ME (5%) and CI (95%) levels are exemplified. A variation in ME causes a more drastic change in sample size 
than a variation in CI. As an example, for a population of 10,000 people, a survey with a 95% CI and 5% ME would require at least 
370 samples. When CI is changed from 95% to 90% or 99%, the sample size which was 370 initially would change into 264 or 623 
respectively. Whereas, when ME is changed from 5% to 10% or 1%; the sample size which was initially 370 would change into 96 or 
4900 respectively. For other ME and CI levels, the researcher should refer to the equations and software provided on Table 1 and 
Table 2 (102).

Table 13. Sample size estimation according to the population size (merely as rough estimates), margin of error (ME) and confidence 
interval (CI)

fixed ME, CI and sample size is directly proportion-
al; in order to obtain a higher CI, the sample size 
should be increased. In addition, sample size is di-
rectly proportional to the population size; higher 
sample size should be used for a larger popula-
tion. A variation in ME causes a more drastic 
change in sample size than a variation in CI. As ex-
emplified in Table 13, for a population of 10,000 
people, a survey with a 95% CI and 5% ME would 
require at least 370 samples. When CI is changed 
from 95% to 90% or 99%, the sample size which 
was 370 initially would change into 264 or 623 re-
spectively. Whereas, when ME is changed from 5% 
to 10% or 1%; the sample size which was initially 
370 would change into 96 or 4900 respectively. For 
other ME and CI levels, the researcher should refer 
to the equations and software provided on Table 1 
and Table 2.

The situation is slightly different for the survey 
studies to be conducted for problem detection. It 
would be most appropriate to perform a prelimi-
nary survey with a small sample size, followed by a 
power analysis, and completion of the study using 
the appropriate number of samples estimated 
based on the power analysis. While 30 is suggest-
ed as a minimum sample size for the preliminary 
studies, the optimal sample size can be deter-
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tions could be utilized for statistical evaluations of 
the big data results (18,104).

As a result, sample size estimation is a critical step 
for scientific studies and may show significant dif-
ferences according to research types. It is impor-
tant that sample size estimation is planned ahead 
of the study, and may be performed through vari-
ous routes:

•	 If a similar previous study is available, or prelim-
inary results of the current study are present, 
their results may be used for sample size esti-
mations via the websites and software men-
tioned in Table 1 and Table 2. Some of these 
software may also be used to calculate effect 
size and power. 

•	 If the magnitude of the measurand variation 
that is required for a substantial clinical effect is 
available (i.e. significant change is 0.51 mmol/L 
for cholesterol, 26.5 mmol/L for creatinine, etc.), 
it may be used for sample size estimation (Fig-
ure 7). Presence of Total Allowable Error, con-
stant and critical differences, biological varia-
tions, reference change value (RCV), etc. will 
further aid in sample size estimation process. 
Free software (especially G-Power) and web 

sites presented on Table 2 will facilitate calcula-
tions. 

•	 If effect size can be calculated by a preliminary 
study, sample size estimations may be performed 
using the effect size (via G-Power, Table 4, etc.)

•	 In the absence of a previous study, if a prelimi-
nary study cannot be performed, an effect size 
may be initially estimated and be used for sam-
ple size estimations

•	 If none of the above is available or possible, rel-
evant literature may be used for sample size es-
timation.

•	 For clinical laboratories, especially CLSI docu-
ments and guidelines may prove useful for 
sample size estimation (Table 9,11).

Sample size estimations may be rather complex, 
requiring advanced knowledge and experience. In 
order to properly appreciate the concept and per-
form precise size estimation, one should compre-
hend properties of different study techniques and 
relevant statistics to certain extend. To assist re-
searchers in different fields, we aimed to compile 
useful guidelines, references and practical soft-
ware for calculating sample size and effect size in 
various study types. Sample size estimation and 

  Power values, for a given sample size (number of interview) (N)

Prevalence N = 5 N = 7 N = 10 N = 15 N = 20 N = 30 N = 50

0.01 0.05 0.07 0.1 0.14 0.18 0.26 0.39

0.02 0.1 0.13 0.18 0.26 0.33 0.45 0.64

0.03 0.14 0.19 0.26 0.37 0.46 0.6 0.78

0.04 0.18 0.25 0.34 0.46 0.56 0.71 0.87

0.05 0.23 0.3 0.4 0.54 0.64 0.79 0.92

0.10 0.41 0.52 0.65 0.79 0.88 0.96 > 0.99

0.15 0.56 0.68 0.8 0.91 0.96 > 0.99 > 0.99

0.20 0.67 0.79 0.89 0.96 0.99 > 0.99 > 0.99

0.25 0.76 0.87 0.94 0.99 > 0.99 > 0.99 > 0.99

0.30 0.83 0.92 0.97 > 0.99 > 0.99 > 0.99 > 0.99

When prevalence is low, higher sample size is required to reach sufficient power. I.e. for a prevalence of 0.2, even 10 interviews 
(N = 10) is sufficient to reach a power value of 0.89. However, for a prevalence of 0.05, with 10 interviews (N = 10) the power will 
remain at 0.4, leading to a type II error. According to reference 103.

Table 14. The relation among prevalence, sample size and power of a study that will detect a problem after "N" number of interviews
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the relationship between P value and effect size 
are key points for comprehension and evaluation 
of biological studies. Evaluation of statistical signif-
icance together with the effect size is critical for 
both basic science, and clinical and laboratory 
studies. Therefore, effect size and confidence in-

tervals should definitely be provided and its im-
pact on the laboratory/clinical results should be 
discussed thoroughly. 
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