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Abstract

The evidence based medicine paradigm demands scientific reliability, but modern research seems to overlook it sometimes. The power analysis 
represents a way to show the meaningfulness of findings, regardless to the emphasized aspect of statistical significance. Within this statistical fra-
mework, the estimation of the effect size represents a means to show the relevance of the evidences produced through research. In this regard, this 
paper presents and discusses the main procedures to estimate the size of an effect with respect to the specific statistical test used for hypothesis 
testing. Thus, this work can be seen as an introduction and a guide for the reader interested in the use of effect size estimation for its scientific en-
deavour.
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Lessons in biostatistics

Introduction

In recent times there seems to be a tendency to 
report ever fewer negative findings in scientific re-
search (1). To see the glass “half full”, we might say 
that our capability to make findings has increased 
over the years, with every researcher having a high 
average probability of showing at least something 
through its own work. However, and unfortunate-
ly, it is not so. As long as we are accustomed to 
think in terms of “significance”, we tend to per-
ceive the negative findings (i.e. absence of signifi-
cance) as something negligible, which is not worth 
reporting or mentioning at all. Indeed, as we often 
feel insecure about our means, we tend to hide 
them fearing of putting at stake our scientific rep-
utation. 

Actually, such an extreme interpretation of signifi-
cance does not correspond to what formerly 
meant by those who devised the hypothesis test-
ing framework as a tool for supporting the re-
searcher (2). In this paper, we aim to introduce the 
reader to the concept of estimation of the size of 

an effect that is the magnitude of a hypothesis 
which is observed through its experimental inves-
tigation. Hereby we will provide means to under-
stand how to use it properly, as well as the reason 
why it helps in giving appropriate interpretation to 
the significance of a finding. Furthermore, through 
a comprehensive set of examples with comments 
it is possible to better understand the actual appli-
cation of what is explained in the text.

Technical framework 

Stated simply, the “significance” is the magnitude 
of the evidence which the scientific observation 
produces regarding to a certain postulated hy-
pothesis. Such a framework basically relies on two 
assumptions: 1) the observation is intimately af-
fected by some degree of randomness (a heritage 
of theory of error from which statistics derives), 
and 2) it is always possible to figure out the way 
the observation would look like when the phe-
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nomenon is completely absent (a derivation of the 
“goodness of fit” approach of Karl Pearson, the 
“common ancestor” of modern statisticians). Prac-
tically, the evidence can be quantified through the 
hypothesis testing procedure, which we owe to 
Ronald Fisher on one hand, and Jerzy Neyman and 
Egon Pearson (son of Karl) on the other hand (2). 
The result of hypothesis testing is the probability 
(or P-value) for which it is likely to consider the ob-
servation shaped by chance (the so-called “null-
hypothesis”) rather than by the phenomenon (the 
so-called “alternative hypothesis”). The size at 
which the P-value is considered small enough for 
excluding the effect of chance corresponds to the 
statistical significance. Thus, what is the sense of a 
non-significant result? There are two possibilities:

•	 there is actually no phenomenon and we ob-
serve just the effect of chance, and

•	 a phenomenon does exist but its small effect is 
overwhelmed by the effect of chance.

The second possibility poses the question of 
whether the experimental setting actually makes 
possible to show a phenomenon when there is re-
ally one. In order to achieve this, we need to quan-
tify how large (or small) is the expected effect pro-
duced by the phenomenon with respect to the 
observation through which we aim to detect it. 
This is the so-called effect size (ES).

P-value limitations

A pitfall in hypothesis testing framework is that it 
assumes the null hypothesis is always determina-
ble, which means it is exactly equal to a certain 
quantity (usually zero). Under a practical stand-
point, to achieve such a precision with observation 
would mean to get results which are virtually iden-
tical to each other, since any minimal variability 
would produce a deviation from the null hypothe-
sis prediction. Therefore, with a large number of 
trials, such a dramatic precision would cause the 
testing procedure of getting too sensible to trivial 
differences, making them looking like significant, 
even when they are not (3). To an intuitive level, 
let’s imagine that our reference value is 1 and we 
set precision level at 10%. By the precision range 
of 0.9–1.1 it would result, a 0.1% difference in any 

actual measure would be shown not significant as 
1 + 0.1% = 1.001 < 1.1. Contrarily, increasing preci-
sion up to 0.01% would give a range of 0.9999–
1.0001, thus showing a 0.1% difference as signifi-
cant since 1.001 > 1.0001. With respect to experi-
mental designs, we can assume that each observa-
tion taken on a case of the study population cor-
responds to a single trial. Therefore enlarging the 
sample would increase the probability of getting 
small P-value even with a very faint effect. As a 
drawback, especially with biological data, we 
would risk to misrecognize the natural variability 
or even to measure error as a significant effect. 

Development of ES measures

The issue of achieving meaningful results is meas-
uring, or rather estimating, the size of the effect. A 
concept which could seem puzzling is that the ef-
fect size needs to be dimensionless, as it should 
deliver the same information regardless of the sys-
tem used to take the observations. Indeed, chang-
ing the system should not influence the size of ef-
fect and in turn its measure, as this would disagree 
with the objectiveness of scientific research. 

Said so, it is noteworthy that much of the work re-
garding ES measuring was pioneered by statisti-
cian and psychologist Jacob Cohen, as a part of 
the paradigm of meta-analysis he developed (4,5). 
However, Cohen did not create anything which 
was not already in statistics, but rather gave a 
means to spread the concept of statistical power 
and size of an effect among non-statisticians. It 
should be noticed that some of the ES measures 
he described were already known to statisticians, 
as it was regarding to Pearson’s product-moment 
correlation coefficient (formally known as r, eq. 2.1 
in Table 1) or Fisher’s variance ratio (known as eta-
squared, eq. 3.4 in Table 1). Conversely, he derived 
some other measures directly from certain already 
known test statistic, as it was with his “d” measure 
(eq. 1.1 in Table 1) which can be considered stem-
ming strictly from the z-statistic and the Student’s 
t-statistic (6).

A relevant aspect of ES measures is that they can 
be recognized according to the way they capture 
the nature of the effect they measure (5):
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Measure Test
Equation

Formula Number

Cohen’s d t-test with equal samples size 
and variance 1.1

Hedge’s g t-test on small samples / 
unequal size 1.2

Glass’s Δ t-test with unequal variances / 
control group 1.3

Glass’s Δ* t-test with small control group 1.4

Steiger’s ψ (psi) omnibus effect (ANOVA) 1.5

Pearson’s r linear correlation 2.1

Spearman’s ρ (rho) rank correlation 2.2

Cramer’s V nominal association (2 x 2 
table) 2.3

 (phi) Chi-square (2 x 2 table) 2.4

r2 simple linear regression 3.1

adjusted r2 multiple linear regression 3.2

Cohen’s f2

multiple linear regression 3.3a

n-way ANOVA 3.3b

η2 (eta – squared) 1-way ANOVA 3.4

partial η2 n-way ANOVA 3.5

ω2 (omega – squared) 1-way / n-way ANOVA 3.6

Odds ratio (OR)
2 x 2 table 4.1a

logistic regression 4.1b

Table 1. Effect size measures
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Effect size (ES) measures and their equations are represented with the corresponding statistical test and appropriate condition 
of application to the sample; the size of the effect (small, medium, large) is reported as a guidance for their appropriate 
interpretation, while the enumeration (Number) addresses to their discussion within the text.

MSE – mean squared error = SSerror / (N – k). Bessel’s correction – n / (n-1)[ ].

;  – average of group / sample. x, y – variable (value). GM – grand mean (ANOVA). s2 – sample variance. n – sample cases. N – total 

cases.  – summation.  – chi-square (statistic). u, v – ranks. m – minimum number of rows / columns. p – number of predictors 
(regression). k – number of groups (ANOVA). SSfactor – factor sum of squares (variance between groups). SSerror – error sum of square 
(variance within groups). SStotal – total sum of squares (total variance). xmyn – cell count (2 x 2 table odds ratio). e – constant (Euler’s 
number). β – exponent term (logistic function).

•	 through a difference, change or offset between 
two quantities, similarly to what assessed by 
the t-statistic 

•	 through an association or variation between 
two (or more) variates, as is in the correlation 
coefficient r.

The choice of the appropriate kind of ES measure 
to use is dictated by the test statistic the hypothe-
sis testing procedure relies on. Indeed, it deter-
mines the experimental design adopted and in 
turn the way the effect of the phenomenon is ob-
served (7). For instance in Table 1, which provides 
the most relevant ES measures, each of them is 
given alongside the test statistic framework it re-
lates to. In some situations it is possible to choose 
between several alternatives, in that almost all ES 
measures are related each other. 

Difference-based family 

In the difference-based family the effect is meas-
ured as the size of difference between two series 
of values of the same variable, taken with respect 
to the same or different samples. As we saw in the 
previous section, this family relies on the concept 
formerly expressed by the t-statistic of standard-
ized difference. The prototype of this family was 
provided by Cohen through the uncorrected stand-
ardized mean difference or Cohen’s d, whose equa-
tion is reported in Table 1 (eq. 1.1; and Example 1). 

Cohen’s d relies on the pooled standard deviation 
(the denominator of equation) to standardize the 
measure of the ES; it assumes the groups having 
(roughly) equal size and variance. When deviation 

from this assumption is not negligible (e.g. one 
group doubles the other) it is possible to account 
for it using the Bessel’s correction (Table 1) for the 
biased estimation of sample standard deviation. 
This gives rise to the Hedge’s g (eq. 1.2 in Table 1 
and Example 1), which is a standardized mean dif-
ference corrected by the pooled weighted stand-
ard deviation (8). 

A particular case of ES estimation involves experi-
ments in which one of the two groups acts as a 
control. In that we presume that any measure on 
control is untainted by the effect, we can use its 
standard deviation to standardize the difference 
between averages in order to minimize the bias, as 
it is done in the Glass’s delta (Δ) (eq. 1.3 in Table 1 
and Example 1) (9). A slight modification of Glass’s 
Δ (termed Glass’s Δ*) (eq. 1.4 in Table 1), which em-
bodies Bessel’s correction, is useful when the con-
trol sample size is small (e.g. less than 20 cases) 
and this sensibly affects the estimate of control’s 
standard deviation. 

It is possible to extend the framework of differ-
ence family also to more than two groups, correct-
ing the overall difference (difference of each ob-
servation from the average of all observations) by 
the number of groups considered. Under a formal 
point of view this corresponds to the omnibus ef-
fect of a 1 factor analysis of variance design with 
fixed effect (1-way ANOVA). Such an ES measure is 
known as Steiger’s psi (ψ) (eq. 1.5 in Table 1 and Ex-
ample 2) or root mean square standardized effect 
(RMSSE) (10,11).

As a concluding remark of this section we would 
mention that it is possible to compute Cohen’s d 
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Example 1 

Two groups of subjects, 30 people each, is enrolled to test the serum blood glucose after the adminis-
tration of an oral hypoglycemic drug. The study aims to assess whether a race-factor might have an ef-
fect over the drug. Laboratory analyses show a blood glucose concentration of 7.8 ± 1.3 mmol/L and 7.1 
± 1.1 mmol/L, respectively. According to eq. 1.1 in Table 1, the ES measure is:

For instance, the power analysis shows that such a cohort (n1 + n2 = 60) would give 60% of probability 
to detect an effect of a size as large as 0.581 (that is the statistical power). Therefore we shall question 
whether the study was potentially inconclusive with respect to its objective. 

In another experimental design on the same study groups, the first one is treated with a placebo in-
stead of the hypoglycemic drug. Moreover this group’s size is doubled (n = 60) in order to increase the 
statistical power of the study. 

For recalculating the effect size, the Glass’s Δ is used instead, as the first group here clearly acts as con-
trol. Knowing that its average glucose concentration is 7.9 ± 1.2 mmol/L, according to eq. 1.3 it is:

The ES calculated falls close to the Cohen’s d. However when the statistical power is computed based 
on new sample size (N = 90) and ES estimate, the experimental design shows a power of 83.9% which is 
fairly adequate. It is noteworthy that the ES calculated through eq. 1.2 gave the following estimate:

x x

Example 2

A cohort of 45 subjects is randomized into three groups (k = 3) of 15 subjects each in order to investi-
gate the effect of different hypoglycemic drugs. Particularly, the blood glucose concentration is 8.6 ± 
0.2 mmol/L for placebo group, 7.8 ± 0.2 mmol/L for drug 1 group and 6.8 ± 0.2 mmol/L for drug 2 
group. In order to calculate the Steiger’s ψ, data available through the ANOVA summary and table were 
obtained using MS Excel’s add-in ToolPak (it can be found under Data→Data Anaysis→ANOVA: single 
factor):

ANOVA SUMMARY

Groups Count Sum Average Variance

Drug 1 15 116.3 7.8 0.06

Drug 2 15 102.3 6.8 0.03

Placebo 15 128.3 8.6 0.02
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also for non-Student’s family test as the F-test, as 
well as for non-parametric tests like Chi-square or 
the Mann-Whitney U-test (12-14).

Association – based family 

In the association-based family the effect is meas-
ured as the size of variation between two (or more) 
variables observed in the same or in several differ-
ent samples. Within this family it is possible to do a 
further distinction, based on the way the variabili-
ty is described.

Associated variability: correlation 

In the first sub-family, variability is shown as a joint 
variation of the variables considered. Under a for-
mal point of view it is nothing but the concept 

ANOVA TABLE

Variance component DF MS F P F crit

Between 
Groups

SSfactor 22.5 2 11.24 288 < 0.01 3.2

Within 
Group

SSerror 1.6 42 0.04

Total SStotal 24.1 44

ss – sum of squares, DF – degrees of freedom, MS – mean 
squares.

Notice that the ANOVA summary displays descriptive statistics for the groups in the design, while the 
ANOVA table gives information regarding the results of ANOVA calculations and statistical analysis. Par-
ticularly with respect to power analysis calculations (see later on in Example 4), it shows the value of the 
components which are the between groups (corresponding to the factor’s sum of squares, SSfactor), the 
within groups (corresponding to the error’s sum of squares, SSerror) and the total variance (that is given 
by the summation of factor’s and error’s sum of squares). 

Considering that the grand mean (average of the all the data taken as a single group) is 7.7 mmol/L, the 
formula becomes:

x

From the ANOVA table we notice that this design had a very large F-statistic (F = 288) which resulted in 
a P-value far below 0.01, which agrees with an effect size as large as 4.51.

which resides in the Pearson’s product moment 
correlation coefficient, which is indeed the pro-
genitor of this group (eq. 2.1 in Table 1 and Exam-
ple 3). In this regard it should be reminded that by 
definition the correlation coefficient is nothing but 
the joint variability of two quantities around a 
common focal point, divided by the product of 
the variability of each quantity around its own bar-
ycentre or average value (15). Therefore, if the two 
variables are tightly associated to each other, their 
joint variability equals the product of their individ-
ual variabilities (which is the reason why r can range 
only between 1 and -1), and the effect can be seen 
as what forces the two variables to behave so. 

When a non-linear association is thought to be 
present, or the continuous variable were discre-
tized into ranks, it is possible to use the Spear-



Biochemia Medica 2016;26(2):150–63  http://dx.doi.org/10.11613/BM.2016.015 

156

Ialongo C. Guide to effect size calculations

Example 3 

The easiest way to understand how the ES measured through r works is to look at scattered data:

30

20

25

10

5

15

0

Va
ri

ab
le

 2
 (Y

)

Variable 1 (X)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

r = 0.82
A 30

20

25

10

5

15

0

Va
ri

ab
le

 2
 (Y

)

Variable 1 (X)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

r = 0.006
B

In both panels the dashed lines represent the average value of X (vertical) and of Y (horizontal). In panel 
A the correlation coefficient was close to 1 and the data gave the visual impression of lying on a straight 
line. In panel B, the data of Y were just randomly reordered with respect to X, resulting in a coefficient r 
very close to zero although the average value of Y was unchanged. Indeed the data appeared to be 
randomly scattered with no pattern. Therefore the effect which made X and Y to behave similarly in A 
was vanished by the random sorting of Y, as randomness is by definition the absence of any effect. 

man’s rho (ρ) instead (eq. 2.2 in Table 1) (6). Alter-
natively, for those variable naturally nominal, if a 
two-by-two (2 x 2) table is used, it is possible to 
calculate the ES through the coefficient phi ( ) (eq. 
2.4 in Table 1). In case of unequal number of rows 
and columns, instead of eq. 2.4, the Cramer’s V can 
be used (eq. 2.3 in Table 1), in which a correction 
factor for the unequal ranks is used, similarly to 
what is done with the difference family. 

Explained variability: general linear models 

In the second sub-family the variability is shown 
through a relationship between two or more vari-
ables. Particularly, it is achieved considering a de-
pendence of one on another, assuming that the 
change in the first is dictated by the other. Under a 
formal standpoint, the relationship is a function 
between the two (in simplest case) variables, of 
which one is dependent (Y) and the other is inde-
pendent (X). The easiest way to give so is through 
a linear function of the well-known form Y = bX + 

e, which suits the so-called general linear models 
(GLM), to which ANOVA, linear regression, and any 
kind of statistical model which can be considered 
stemming from that linear function belong. Partic-
ularly, in GLM the X is termed the design (one or a 
set of independent variables), b weight and e the 
random normal error. In general, such models aim 
to describe the way Y varies according to the way 
X changes, using the association between varia-
bles to predict how this happens with respect to 
their own average value (15). In linear regression, 
the variables of the design are all continuous, so 
that estimation is made point-to-point between X 
and Y. Conversely, in ANOVA, the independent var-
iables are discrete/nominal, and thus estimation is 
rather made level-to-point. Therefore, the ways 
we assess the effect for these two models slighlty 
differ, although the conceptual frame is similar.

With respect to linear regression with one inde-
pendent variable (predictor) and the intercept 
term (which corresponds to the average value of 
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Y), the ES measure is given through the coefficient 
of determination or r2 (eq. 3.1 in Table 1). Notewor-
thy, in this simplest form of the model, r2 is noth-
ing but the squared value of r (6). This should be 
not surprising because if a relationship is present 
between the variables, then it can be used to 
achieve prediction, so that the stronger the rela-
tionship the better is the prediction. For mutiple 
linear regression, where we have more than one 
predictor, we can use the Cohen’s f2 instead (eq. 
3.3a in Table 1) in which the r2 is corrected by the 
amount of variation that predictors leave unex-
plained (4). Sometimes the adjusted r2 (eq. 3.2 in 
Table 1) is usually presented alongside to r2 in mul-
tiple regression, in which the correction is made 
for the number of predictors and the cases. It 
should be noticed that such a quantity is not a 
measure of effect, but rather it shows how suitable 
the actual set of predictors is with respect to the 
model’s predictivity.

With respect to ANOVA, the linear model is rather 
used in order to describe how Y varies when the 
changes in X are discrete. Thus, the effect can be 
thought as a change in clustering of Y with respect 
to the value of X, termed the factor. In order to as-
sess the magnitude of the effect, it is necessary to 
show how much the clustering explains the varia-
bility (where the observations of Y locate at the 

change of X) with respect to the overall variability 
observed (the scatter of all the observations of Y). 
Therefore, we can write the general form of any ES 
measure of this kind:

Recalling the law of variance decomposition, for a 
1-way ANOVA the quantity above can be achieved 
through the eta-squared (η2), in which the varia-
tion between clusters or groups accounts for the 
variability explained by the factor within the de-
sign (eq. 3.4 in Table 1 and Example 4) (4,6). The 
careful reader will recognize at this point the anal-
ogies between r2 and η2 with no need for any fur-
ther explanation. 

It must be emphasized that η2 tends to inflate the 
explained variability giving quite larger ES esti-
mates than it should be (16). Moreover, in models 
with more than one factor it tends to underesti-
mate ES as the number of factors increases (17). 
Thus, for designs with more than one factor it is 
advisable to use the partial-η2 instead (eq. 3.5), re-
marking that the equation given herein is just a 
general form and the precise form of its terms de-
pends on the design (18). Noteworthy, η2 and 
partial-η2 coincide in case of 1-way ANOVA (19,20). 
A most regarded ES for ANOVA, which is advisable 

Example 4

Recalling the ANOVA table seen in Example 2, we can compute η2 accordingly:

Thereafter for ω2 we got instead:

x

If we recall the value we got previously for ψ (4.51) we notice a considerable difference between these 
two. Actually, ψ can be influenced by a single large deviating average within the groups, therefore om-
nibus effect should be regarded as merely indicative of the phenomenon under investigation. Note-
whorthy, it should be possible to assess the contrast ES (e.g. largest average vs others) properly rear-
ranging the Hedge’s g. 
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to use in place of any other ES measure in that it is 
virtually unbiased, is the omega-squared (ω2) (eq. 
3.6 in Table 1 and Example 4) (16,18,21). Lastly, it 
should be noticed that Cohen’s f2 can also suit n-
way ANOVA (eq. 3.3b) (4). It should be emphasized 
that in general it holds η2 > partial-η2 > ω2.

Odds ratio 

The odds ratio (OR) can be regarded as a peculiar 
kind of ES measure because is suits both 2 x 2 con-
tingency tables as well as non-linear regression 
models like logistic regression. In general, OR can 
be tought as a special kind of association family 
ES for dicothomous (binary) variables. In plain 
words, the OR represents the likelihood that an 
event occurs due to a certain factor against the 
probability that it arises just by chance (that is 
when the factor is absent). If there is an associa-
tion then the effect changes the rate of outcomes 
between groups. For 2 x 2 tables (like Table 2) the 
OR can be easily calculated using the cross prod-
uct of cells frequency (eq. 4.1a in Table 1 and Ex-
ample 5A) (22). 

Factor (X)
Outcome (Y)

1 0

1 x1y1 (Ppresent) or a x1y0 (1 – Ppresent) or b

0 x0y1 (Pabsent) or c x0y0 (1 – Pabsent) or d

1 – presence; 0 – absence. The terms presence and absence 
refer to the factor as well as to the outcome.
a,b,c,d – common coding of cell frequencies used for the 
cross product calculation. 

Table 2. 2 x 2 nominal table for odds ratio calculation

Example 5A

Getting OR from 2 x 2 tables is trivial and can be easily achieved by hand calculation as it is possible by 
the table below:

Factor
Outcome

present absent

present 44 23

absent 19 31

Therefore using eq. 4.1a in Table 1 it can be calculated:

x
x

It is noteworthy that in this case the Cramer’s V gave also an intermediate ES (0.275). Nonetheless they 
represent quite distant concepts in that Cramer’s V is aimed to show wheter variability within the cross-
tab frame is due to the factor, while OR shows how factor changes the rate of outcomes in a non-addi-
tive way. 

However, OR can be also estimated by means of 
logistic regression, which can be considered simi-
lar to a linear model in which the dependent vari-
able (termed the outcome in this model) is binary. 
Indeed, a logistic function is used instead of a line-
ar model in that outcome abruptly changes be-
tween two separate statuses (present/absent), so 
that prediction has to be modelled level-to-level 
(23). In such a model, finding the weight of the de-
sign (that is b in the GLM) is tricky, but using a log-
arithmic transformation, it is still possible to esti-



http://dx.doi.org/10.11613/BM.2016.015 Biochemia Medica 2016;26(2):150–63 

  159

Ialongo C. Guide to effect size calculations

mate it through a linear function. It is possible to 
show that b (usually regarded as beta in this 
framework) is the exponent of a base (the Euler’s 
number or e) which gives the OR (23). Noteworthy, 
each time there is a unit increase in the predictor, 
the effect changes according to a multiplicative 
rather than additive effect, differently than what 
seen in GLM. A major advantage of logistic regres-
sion relies in its flexibility with respect to cross ta-
bles, in that it is possible to estimate ES accounting 
for covariates and factors more than binary (multi-
nomial logistic regression). Moreover, through lo-
gistic regression it is also possible to achieve OR 
for each factor in a multifactor analysis similarly to 
what is done through GLM.

Confidence interval 
Considering that they are estimates, it is possible 
to give confidence interval (CI) for ES measures as 
well, with their general rules holding also in this 
case, so that the narrower the interval the more 
precise the estimate is (24). However, this one is 
not a simple task to achieve because ES has non-
central distribution as it represents a non-null hy-
pothesis (25). The methods devised to overcome 

such a pitfall should deserve a broader discussion 
which would take us far beyond the scope of this 
paper (10,11,26).

Nonetheless quite easy methods based on estima-
tion of ES variance can be found and have been 
shown to work properly up to mild sized effects as 
is for Cohen’s d (Example 6) (25). For instance, CI 
estimation method regarding OR and can be easi-
ly achieved by the cells frequency of the 2 x 2 table 
(Example 5B) (6). 

We would remark that although CI of ES might ex-
quisitely concern meta-analysis, actually they rep-
resent the most reliable proof of the ES reliability. 
An aspect which deserves attention in this regard 
is that CI of ES reminds us that any ES actually 
measured is just an estimate taken on a sample, 
and as such it depends on the sample size and var-
iability. It is sometimes easy to misunderstand or 
forget this, and often the ES obtained through an 
experiment is erroneously confused with the one 
hypothesized for the population (27). In this re-
gard, running power analysis after the fact would 
be helpful. Indeed, supposing the population ES 
being greater or at least equal with the one actu-
ally measured, it would show the adequacy of our 

Example 5B

In order to calculate the CI of OR from Example 5A it is necessary to compute the standard error (SE) as 
follows:

First, it is necessary to transform the OR taking its natural logarithm (ln) for using the normal distribu-
tion to get the confidence coefficient (that one which corresponds to the α level). Therefore we got ln 
(3.12) = 1.14, so that:

x

A back transformation through the exponential function makes possible to get this result in its original 
scale. Hence, if e0.38 = 1.46 and e1.90 = 6.72, the 95% CI is 1.46 to 6.72. Noteworthy, if the interval doesn’t 
comprise the value 1 (recalling that ln (1) = 0), the OR and in turn the ES estimate can be considered sig-
nificant. However, we shall object that the range of CI is quite wide, so that the researcher should pay 
attention when commenting the point estimation of 3.12.
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Example 6 

Using the data from Example 1, we can calculate the Cohen’s d variance estimate with the following 
equation:

x x x x

Then, we can use this value to compute the 95% CI accordingly:

x x

Therefore the estimate falls within the interval ranging -0.150 and 1.312. Interestingly, this shows that 
the value of the ES estimated through that design was unreliable, because the confidence interval com-
prises the zero value. Indeed the experimental design aforementioned gave a non-statistically signifi-
cant result when testing the average difference between the two groups by means of unpaired t-test. 
This is in accordance with the finding of an underpowered design, which is unable to show a difference 
if there is one, as well as to give for it any valid measure. 

experimental setting with respect to a hypothesis 
as large as the actual ES (28). Such a proof will 
surely guide our judgment regarding the proper 
interpretation of the P-value obtained whereby 
the same experiment. 

Conversion of ES measures 

Maybe the most intriguing aspect of ES measures 
is that it is possible to convert one kind of measure 
into another (4,25). Indeed, it is obvious that an ef-
fect is as such regardless to the way it is assessed, 
so that changing the shape of the measure is noth-
ing but changing the gear we use for measuring. 
Although it might look like appealing, this is some-
how a useless trick except for meta-analysis. More-
over, it might be even misleading if one forgets 
what each kind of ES measure represents and is 
meant for. This kind of “lost-in-translation” is quite 
common when the conversion is made between 
ES measures belonging to different families (Ex-
ample 7).

Contrarily, it seems to be more useful to obtain ES 
measure from the test statistic whenever the re-
ported results lack of any other means to get ES 
(4,13,21). However, as in the case of Cohen’s d 

from t-statistic, it is necessary to know the t score 
as well as the size of each sample (Example 7).

Interpreting the magnitude of ES

Cohen gave some rules of thumb to qualify the 
magnitude of an effect, giving also thresholds for 
categorization into small, medium and large size 
(4). Unfortunately, they were set based on the kind 
of phenomena which Cohen observed in his field, 
so that they can be hardly translatable into other 
domains outside behavioural sciences. Indeed 
there is no means to give any universal scale, and 
the values which we take as reference nowadays 
are just a heritage we owe to the way the study of 
ES was commenced. Interestingly, Cohen as well 
as other researchers have tried to interpret the dif-
ferent size ranges using an analogy between ES 
and Z-score, whereby there was a direct corre-
spondence between the value and the probability 
to correctly recognize the presence of the investi-
gated phenomenon by its single observation (29). 
Unfortunately, although alluring, this “percentile-
like” interpretation is insidious in that it relies on 
the assumption that the underlying distribution is 
normal.
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Example 7

The data which were used to generate scatterplot B of Example 3 are compared herein by means of un-
paired t-test. Therefore, considering the average values of 16 ± 6 and 15 ± 6, we obtained a t-statistic of 
0.453. Hence, the corresponding Cohen’s d ES was:

x x

x x xx

It should be noticed that panel B of Example 3 reported a correlation close to 0, that is no effect as we 
stated previously. By the same groups let’s calculate now the Cohen’s d from r:

x x

Not surprisingly we obtain a negligible effect. Let’s now try again with the data which produced the 
scatterplot of panel A. While the statistical test gives back the same result, this time the value of d ob-
tained through r changes dramatically:

x x

The explanation is utterly simple. The unpaired t-test is not affected by the order of observations within 
each group, so that shuffling the data makes no difference. Conversely, the correlation coefficient relies 
on data ordering, in that it gives a sense to each pair of observations it is computed with. Thus, comput-
ing d through r gives an ES estimate which is nothing but the difference or offset between observa-
tions that would have been produced by an effect as large as the one which produced an association as 
much strong. 

An alternative way of figuring out ES magnitude 
relies on its “contextualization”, that is taking its 
value with respect to any other known available 
estimation, as well as to the biological or medical 
context it refers to (30). For instance, in complex 
disease association studies, where single nucleo-
tide polymorphisms usually have an OR ranging 
around 1.3, evidence of an OR of 2.5 should not be 
regarded as moderate (31). 

Computing ES

The calculation of ES is part of the power analysis 
framework, thus the computation of its measures 
is usually provided embedded within statistical 
software packages or achieved through stand-

alone applications (30,32). For instance, the soft-
ware package Statistica (StatSoft Inc., Tulsa, USA) 
provides a comprehensive set of functions for 
power analysis, which allows computing ES as well 
as CI for many statistical ES measures (33). Alterna-
tively, the freely available application G*Power 
(Heinrich Heine Universitat, Dusseldorf, Germany) 
makes possible to run in stand-alone numerous ES 
calculations with respect to the different statistical 
test families (34,35). Finally, it is possible to find on-
line many comprehensive suites of calculators for 
different ES measures (36-38). 

Notwithstanding, it should be noted that any ES 
measure showed in tables within this paper can be 
used for calculation with basic (not statistical) 
functions available through a spreadsheet like MS 
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Excel (Microsoft Corp., Redmond, USA). In this re-
gard, the Analysis ToolPak embedded in MS Excel 
allows to get information for both ANOVA and lin-
ear regression (39). 

Conclusions (Are we ready for the efect 
size?)

In conclusion the importance of providing an esti-
mate of the effect alongside the P-value should be 
emhasized, as it is the added value to any research 
representing a step toward the scientific trueness. 
For this reason, researchers should be encouraged 
to show the ES in their work, particularly reporting 
it any time the P-value is mentioned. It should be 
also advisable to provide CI along with ES, but we 
are aware that in many situations it could be rather 
discouraging as there is still no accessible means 
for its computation as it is with ES. In this regard, 
calculators might be of great help, although the 
researchers should always bear in mind formulae 
to recall what each ES is suited for and what infor-
mation it actually provides. 

In the introduction of this paper, we were wonder-
ing whether negative findings were actually de-
creasing in scientific research, or rather we were 
observing a kind of yet unexplained bias. Of 
course, the dictating paradigm of P-value is lead-
ing to forgetting what is scientific evidence and 
what is the meaning in its statistical assessment. 
Nonetheless, through the ES we could start teach-
ing ourselves of weighting findings against both 
chance and magnitude, and that would be a huge 
help in our appreciation of any scientific achieve-
ment. By the way, we might also realize that the 
bias probably lays in the way we conceive nega-
tive and positive things, the reason why we tend 
to mean the scientific research as nothing but a 
“positive” endeavour regardless to the size of what 
it comes across. 
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