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Abstract

Carbohydrate sulfotransferases (CHST) catalyse the biosynthesis of proteoglycans that enable physical interactions and signalling between different 
neighbouring cells in physiological and pathological states. The study aim was to provide an overview of emerging diagnostic and prognostic appli-
cations of CHST. PubMed database search was conducted using the keywords “carbohydrate sulfotransferase” together with appropriate inclusion 
and exclusion criteria, whereby 41 publications were selected. Additionally, 40 records on CHST genetic and biochemical properties were hand-pic-
ked from UniProt, GeneCards, InterPro, and neXtProt databases. 
Carbohydrate sulfotransferases have been applied mainly in diagnostics of connective tissue disorders, cancer and inflammations. The lack of CHST 
activity was found in congenital connective tissue disorders while CHST overexpression was detected in different malignancies. Mutations of CHST3 
gene cause skeletal dysplasia, chondrodysplasia, and autosomal recessive multiple joint dislocations while increased tissue expression of CHST11, 
CHST12 and CHST15 is an unfavourable prognostic factor in ovarian cancer, glioblastoma and pancreatic cancer, respectively. Recently, CHST11 and 
CHST15 overexpression in the vascular smooth muscle cells was linked to the severe lung pathology in COVID-19 patients. Promising CHST diagnostic 
and prognostic applications have been described but larger clinical studies and robust analytical procedures are required for the more reliable dia-
gnostic performance estimations.
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Introduction

Sulfation of small molecules, carbohydrates and 
proteins, is a set of metabolic reactions that occur 
in most organisms. This important modifying pro-
cess takes place in bacteria, plants, and mammals. 
Sulfation is linked to a number of cellular signal-
ling events and receptor-ligand binding modifica-
tions associated with physiological and pathologi-
cal processes such as hormone regulation, carti-
lage creation, cancer cell spreading and solubilisa-
tion of harmful xenobiotics (1). In addition, sugar 
sulfation has also been shown to affect leukocyte-
endothelial cell adhesion at chronic inflammation 

sites and expansion of neurons and astrocytes (2). 
Sulfations are catalysed by sulfotransferases 
(SULT), enzymes that are primarily responsible for 
the transfer of sulphate from a donor molecule, 
3’-phosphoadenosine-5’-phosphosulfate (PAPS), 
to various hydroxyl and amine substrates (3). Two 
classes of SULT have been described: cytosolic 
SULT and membrane-associated SULT. Cytosolic 
SULT are involved in the sulfation of low-molecu-
lar-mass endogenous and exogenous compounds 
such as hormones, bioamines, drugs and other xe-
nobiotic agents (4). On the other hand, glycosami-
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noglycans (GAG), proteoglycans (PG), and glycolip-
ids that mediate processes like carcinogenesis and 
cartilage formation are created mainly by carbohy-
drates sulfation that are catalysed by the mem-
brane-associated SULT (5). Carbohydrate sul-
fotransferases (CHST) are Golgi network localized 
membrane associated enzymes. The glycans asso-
ciated with lipids and proteins moving through 
the secretory pathway are their primary substrates. 
The extracellular matrix (ECM) is made up largely 
of GAG and PG, which are particularly abundant in 
connective tissues (6). Glycosaminoglycans are lin-
ear acidic polysaccharides of heparin/heparan sul-
phate, chondroitin/dermatan sulphate (CS), kera-
tan sulphate (KS) or hyaluronic type (7). Depend-
ing on the attached GAG chains and relative size, 
PG are categorized into plasma membrane associ-
ated heparan sulphate proteoglycans (HPSPG), 
chondroitin or dermatan sulphate proteoglycans 
(CSPG and DSPG) and keratan sulphate proteogly-
cans (KSPG). Versican, aggrecan and brevican rep-
resent some ECM-forming CSPG while biglycan 
and decorin are ECM-forming DSPG. Fibromodulin 
is a member of KSPG family which is also involved 
in the ECM formation by participating in the colla-
gen assembly. Interestingly, members of one PG 
family, syndecans, contain heparan sulphate, der-
matan sulphate and chondroitin sulphate GAG 
chains. As part of ECM, CSPG and DSPG interact 
with cells, including the inflammatory cells, either 
indirectly via hyaluronic and other GAG or directly 
via receptors such as CD44 antigen which is also 
CSPG (8). These interactions enable a specific form 
of communication and connection between 
neighbouring cells. In addition to KSPG biosynthe-
sis, CHST catalyse CSPG biosynthesis and thus en-
able formation of connections or, indirectly, trans-
mit critical signals between neighbouring cells in 
physiological and pathological conditions (9). The 
CHST nomenclature and their enzymatic proper-
ties are summarized in Table 1.

In summary, literature and other data suggest that 
CHST are involved in lymphocyte trafficking and 
homing to inflamed tissue via enhanced biosyn-
thesis of selectin L and mucin like glycans (CHST1-
4, CHST7). Carbohydrate sulfotransferases 3 and 7 
are also expressed in the nervous system where, 

among others things, they enable the neural cell 
mobility. Due to its expression in human natural 
killer-1 cells, CHST10 is also expected to be in-
volved in the immune response. In response to 
chronic inflammation and other causes of tissue 
injury, macrophage and fibroblast CHST15 expres-
sion is increased and mediates tissue remodelling 
and fibrosis development. In addition to their roles 
in inflammation, CHST3, CHST6 and CHST11-14 
have a critical role in cartilage and cornea forma-
tion. Other CHST are more restricted to specific or-
gans. Thus, CHST5 is expressed almost exclusively 
in intestines while CHST8 and CHST9 are expressed 
in the pituitary gland where they catalyse biosyn-
thesis of glycoprotein hormones thyrotropin and 
lutropin.

Due to their role in cartilage and bone formation 
and migration of inflammatory and cancer cell, 
some authors implied that CHST may be used in 
diagnostics of connective tissue disorders, cancer 
and inflammations (10-12). Besides, CHST may also 
be used for the risk stratification and prognosis 
(13). In addition to the diagnostic and prognostic 
applications, development of different therapeutic 
applications in which CHST serve as the molecular 
targets is underway (2,9). In summary, the estab-
lished role of CHST in a wide range of pathological 
processes makes them a promising candidate for 
diagnostic applications. Therefore, the aim of this 
study was to provide an overview of emerging di-
agnostic and prognostic applications of CHST in 
different disease conditions, primarily congenital 
connective tissue diseases and malignant diseases. 
The following topics on emerging CHST diagnos-
tic applications were covered: application in con-
genital connective tissue disorders, in cancer, in 
risk stratification of infectious diseases and phar-
macogenomics. The review ends with the labora-
tory aspects of the reviewed studies and limita-
tions and future prospects.

Research strategy

First, a PubMed (National Institutes of Health, USA) 
search for the publications on CHST diagnostic 
and prognostic applications was performed. The 
search was performed using the keywords “carbo-
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Name (synonym) Catalysed reaction Reference

CHST1
(Keratansulfate Gal-6 sulfotransferase)

Sulphate transfer to position 6 of internal galactose (Gal) residues of 
keratan 14-17

CHST2
(N-acetylglucosamine 
6-O-sulfotransferase 1)

Sulphate transfer to position 6 of non-reducing GlcNAc residues within 
keratan-like structures on N-linked glycans and within mucin-associated 

glycans
18-20

CHST3
(Chondroitin 6-0-Sulfotransferase 1) Sulphate transfer to position 6 of GalNAc residue of chondroitin 21-23

CHST4
(Galactose/N-acetylglucosamine/N-
acetylglucosamine 
6-O-sulfotransferase 3)

Sulphate transfer to the hydroxyl group at C-6 position of the 
non-reducing GlcNAc residue within O-linked mucin-type glycans 24,25

CHST5
(N-acetylglucosamine 
6-O-sulfotransferase 3)

Sulphate transfer to position 6 of non- GlcNAc residues and O-linked 
sugars of mucin-type acceptors 26-30

CHST6
(Corneal N-acetylglucosamine-6-O-
sulfotransferase)

Sulphate transfer to position 6 of non-reducing GlcNAc residues of 
keratan 31-33

CHST7
(Chondroitin 6-sulfotransferase 2)

Sulphate transfer to position 6 of non- GlcNAc residues and to position 6 
of the GalNAc residue of chondroitin 34-36

CHST8
(GalNAc-4-O-sulfotransferase 1)

Sulphate transfer to position 4 of non-reducing GalNAc residues in both 
N-glycans and O-glycans 37,38

CHST9
(GalNAc-4-O-sulfotransferase 2)

Sulphate transfer to position 4 of non-reducing GalNAc residues in both 
N-glycans and O-glycans 39,40

CHST10
(Human Natural Killer-1 
sulfotransferase)

Sulphate transfer to position 3 of terminal glucuronic acid of both 
protein- and lipid-linked oligosaccharides 41-43

CHST11
(Chondroitin 4-O-sulfotransferase 1) Sulphate transfer to position 4 of GalNAc residue of chondroitin 44,45

CHST12
(Chondroitin 4-O-sulfotransferase 2)

Sulphate transfer to position 4 of GalNAc residue of chondroitin and 
desulfated dermatan sulphate 46,47

CHST13
(Chondroitin 4-O-sulfotransferase 3) Sulphate transfer to position 4 of GalNAc residue of chondroitin 48,49

CHST14
(Dermatan 4-sulfotransferase 1) Sulphate transfer to position 4 of GalNAc residue of dermatan sulphate 50,51

CHST15
(N-acetylgalactosamine 4-sulphate 
6-O-sulfotransferase/B-cell 
recombination-activating 
genes-associated gene protein)

Sulphate transfer to C-6 hydroxyl group of the GalNAc 4-sulfate residue 
of chondroitin sulphate A and forms chondroitin sulphate E containing 

GlcA-GalNAc(4,6-SO4) repeating units
52-54

CHST - carbohydrate sulfotransferase. GlcNAc - N-acetylglucosamine. GalNac - N-acetylgalactosamine.

Table 1. Nomenclature and enzymatic properties of carbohydrate sulfotransferases

hydrate sulfotransferase” and it resulted in 144 
publications (Figure 1). The following exclusion cri-
teria were used to filter out diagnostically irrele-
vant records: studies using animal models or stud-
ies on therapeutic applications. A detailed analysis 

of these publications showed that only 17 records 
met the following inclusion criterion: clinical diag-
nostic study. Among references cited in these 17 
publications, 24 publications meeting the inclu-
sion and exclusion criteria were found, making a 
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total of 41 PubMed records. This unexpected out-
come was a result of non-standard CHST nomen-
clature and diagnostic studies that involved many 
diagnostic parameters (Table 1). These 41 records 
were divided into the following categories: con-
genital connective tissue disorders, cancer, infec-
tious diseases and pharmacogenomics. For proper 
CHST characterization and classification, addition-
al 40 entries from UniProt, GeneCards, InterPro, 
and neXtProt databases dealing with CHST genet-
ic and biochemical properties were used in the in-
troductory part of the review what makes a total 
of 81 records/data entries (Figure 1).

Diagnostic applications in congenital 
connective tissue disorders

Mutations and abnormalities in CHST genes are di-
rectly related to the development of some con-
genital connective tissue disorders. Pathogenic 
variants of CHST genes cause skeletal dysplasia, 
chondrodysplasia, and autosomal recessive multi-
ple joint dislocations (ARMJD) (55,56). Various re-
search studies unveiled the role of CHST3 in con-
genital skeletal diseases (55). Jenniskens et al., 
Brown and Eames, and Ranza et al. confirmed that 
mutations in CHST3 caused development of 
AJMRD and chondrodysplasia with multiple dislo-
cations (56-58). Sear et al., using the CHST3 gene 

sequencing, uncovered the new homozygous du-
plication c.407 426dup (p.Thr143Cysfs*80) in one 
form of skeletal dysplasia (59). Kausar et al. showed 
that CHST3 mutations cause spondyloepiphyseal 
dysplasia with joint dislocation, short stature and 
scoliosis. Clinical evaluations were done on three 
disorder affected Pakistani families. In-depth mu-
tation analysis was necessary to determine their 
pathogenicity. The study unveiled biallelic variants 
c.590 T > C;p.(Leu197Pro), c.603C > A;p.(Tyr201Ter) 
and c.661C > T;p.(Arg221Cys) of the CHST3 gene 
(NM_004273.5) in all families. Carbohydrate sul-
fotransferase 3 deficiency manifesting as spondy-
loepiphyseal dysplasia was also described by 
Thiele et al., (60). Moreover, Waryah et al., by using 
the whole exome sequencing (WES), identified a 
novel point mutation (c.802G > T;p.Glu268*) in 
CHST3 gene associated with spondyloepiphyseal 
dysplasia and hearing loss in Pakistani relatives 
(61).

Hennet et al. suggested that two more congenital 
connective tissue diseases are associated with de-
fective carbohydrates sulfation caused by muta-
tions in CHST6, and CHST14 genes: macular corneal 
dystrophy is caused by the CHST6 deficiency while 
some mutations of the CHST14 gene cause a new 
form of the Ehlers-Danlos syndrome (N = 19 and N 
= 11, respectively) (62-64). Finally, the prognostic 
significance of CHST genes mutations in the con-

Figure 1. Flow chart of the study selection process. Keywords used for the PubMed search: “carbohydrate sulfotransferase”. Exclu-
sion criteria were: studies using animal models or studies on therapeutic applications. The inclusion criterion was: clinical diagnostic 
study.

Total: 41 publications and 40 other records

24 publications17 publications

144 publications

analysis of cited references

40 hand-picked data records

PubMed search

Application of the inclusion and exclusion criteria

UniProt/GeneCards/InterPro/neXtProt database search
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nective tissue disorders was shown in study by 
Blanco et al. (65). The aim of the study was to find a 
predictive model based on genetic polymor-
phisms and clinical variables that would be used 
as a genetic prognostic model of the primary knee 
osteoarthritis (OA). Interestingly, unlike other stud-
ies of congenital connective tissue diseases de-
scribed here, in which whole blood samples were 
used to collect genetic material, saliva or even se-
rum samples were used in this study. Authors in-
cluded the polymorphisms located in the candi-
date genes previously known to be implicated in 
the OA development, generating the list of ap-
proximately 774 single nucleotide polymorphisms 
(SNPs). Results of their multivariate logistic regres-
sion analysis indicated that the polymorphism lo-
cated in the CHST3 gene (rs874692) was signifi-
cantly associated with knee OA progression (N = 
220, odds ratio (OR) = 2.36, P = 0.017). Addition of 
23 gene polymorphisms, including the mentioned 
CHST3 polymorphism, to the predictive model 
containing only clinical variables improved its per-
formance measured by receiver-operating-curve 
(ROC) area-under-curve (AUC) from 0.62 to 0.82 
(sensitivity = 93%, specificity = 55%, positive pre-
dictive value = 57%, negative predictive value = 
92%). It was also found that CHST11 gene polymor-
phism (rs835487) is associated with prevalence of 
hip OA (65).

Cancer diagnostics, risk stratification and 
prognosis

Various members of CHST family have been impli-
cated as contributors to carcinogenesis and tu-
mour progression and as such have prognostic 
potential in various cancer types (66-69). Aberrant 
activation of CHST genes is linked to pathological 
processes like tumour initiation and progression. 
Carbohydrate sulfotransferase and chondroitin 
sulphate are also involved in metastasis at various 
sites. It has been shown that CHST3, CHST7, 
CHST11-13 and CHST15 have functional relevance 
and prognostic potential in various cancer types 
(66). For example, study of normal and malignant 
human stromal cells and prostate epithelial sug-
gested that CHST15 overexpression leads to non-

canonical wingless/int-1 (WNT) signalling activa-
tion, a characteristic hallmark of cancer (70). Simi-
lar result has been found in the glioblastoma 
(GBM) case where the CHST12 tissue expression 
was also associated to the WNT signalling (71). A 
recent study has revealed that CS and CHST also 
play a significant role in the metastatic spread of 
tumour cells through adhesive properties modula-
tion (72). The study has shown that CHST11, 
CHST12 and CHST15 messenger ribonucleic acid 
(mRNA) tissue expressions in the malignant ovari-
an tumours were increased compared to the ex-
pressions in the non-malignant ovarian tumours 
(N = 95, P < 0.05 for each gene expression).

In the context of malignant diseases, the most 
thoroughly described are diagnostic applications 
of CHST7 and CHST15. Carbohydrate sulfotrans-
ferase 7 controls the CSPG concentrations, which 
contribute to metastatic processes and carcino-
genesis (73,74). Deoxyribonucleic acid methylation 
of the CHST7 gene, determined by the methyla-
tion-sensitive high-resolution melting (MS HRM), 
was linked to the pituitary tumour and colon can-
cer development (75,76). Hypermethylation of 
CHST7 found in pituitary adenomas was associat-
ed with tumour proliferation (N = 106, P = 0.026) 
(75). A similar result was obtained in the evaluation 
of CHST7 role in colorectal cancer. The results indi-
cate that CHST7 gene hypermethylation in the 
white blood cells is associated with the increased 
risk of colorectal cancer (N = 432, OR = 4.45, P < 
0.001) (76). Significant differences in CHST7 gene 
expressions were detected in malignant lung tis-
sue samples as compared to the adjacent non-ma-
lignant tissues (N = 46, P < 0.001) (77). In this re-
gard, possible application of the serum CHST7 
concentration in differentiation of non-malignant 
pulmonary inflammations and non-small cell lung 
carcinoma (NSCLC) has been shown (N = 125, AUC 
= 0.85, sensitivity = 78%, specificity = 75%) (73). 
These results were preceded by the univariate sta-
tistical analyses revealed significant differences in 
the peripheral blood mononuclear cells CHST7 ex-
pressions between NSCLC and non-malignant pul-
monary diseases (73,74).

The CHST15 overexpression, determined by im-
munohistochemically staining, has been reported 
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in pancreatic ductal adenocarcinoma (78). Present-
ed data show a significant negative association 
between the disease-free survival and CHST15 ex-
pression (N = 36, hazard ratio = 9.456, P < 0.001). 
Although the study was unable to show which cell 
types were CHST15 positive, it provided insight 
into the possible SULT application as target for 
pancreatic cancer treatment. A similar study 
showed that CHST15 expression could be detect-
ed in the pancreatic cancer cells cytoplasm and fi-
broblasts in the cancer stroma. High CHST15 ex-
pression in the cancer stroma led to worse overall 
survival as compared to low CHST15 expression 
associated with the higher incidence of immature 
fibrosis (N = 64, P = 0.02) (67).

In addition to NSCLC and pancreatic cancer, the di-
agnostic properties of CHST were evaluated in 
other cancers. Oliveira-Ferrer et al. compared the 
mRNA expression of the different CHST in malig-
nant and non-malignant ovarian tumours (72). The 
study results revealed that there was significantly 
higher mRNA expression of CHST11, CHST12, 
CHST15 and CHST13 compared to non-malignant 
tumours (72). Western blot analysis of tissue ho-
mogenates showed high CHST11 expression, 
which was individually associated with shorter 
progression-free survival in ovarian cancer (N = 
216, P = 0.027) (72). Wang et al. have shown that 
CHST12 is highly expressed in GBM (71). They ana-
lysed GBM tissue by immunochemical methods 
and quantitative real-time polymerase chain reac-
tion (qRT-PCR). Univariate and multivariate regres-
sion analyses showed CHST12 overexpression in 
comparison to the adjacent healthy tissue (N = 60, 
P < 0.003 and P < 0.021, respectively). Results pre-
sented in this study also indicate potential prog-
nostic role of CHST12 in GBM development and 
progression.

Risk stratification in infectious disease

It is well known that certain types of cancers are 
associated with viral infection. Chronic hepatitis B 
virus (HBV) infection is a major risk factor for hepa-
tocellular carcinoma (HCC) and about 50% of HCC 
are HBV positive. Carbohydrate sulfotransferase 4 
is expressed abnormally in different cancers and 

plays an integral role in lymphocyte homing. It has 
been shown that its downregulation promotes 
HBV expression and appearance of hepatocellular 
carcinoma associated with hepatitis B virus (HBV-
HCC). On the other hand, increased CHST4 expres-
sion is needed for macrophage, CD4+ cell, neutro-
phil, and dendritic cell recruitment that inhibits 
HBV-HCC progression. Zhang et al. revealed that in 
HBV-HCC CHST4 tissue expression was downregu-
lated as compared to the normal tissues (N = 242, 
P < 0.001) which may promote HBV expression and 
malignant behaviours in HBV positive HCC. Their 
results also indicate a possible role of CHST4 in 
CD4+ T cells, macrophages, dendritic cells and 
neutrophils recruitment into tumour microenvi-
ronment which may lead to inhibition of tumour 
progression. To conclude, results of their analysis 
suggest that CHST4 expression could be recog-
nised as a tumour suppressor in HBV positive HCC 
and potential diagnostic and therapeutic target. It 
has been found that high CHST4 expression is fa-
vourable and independent prognostic factor of 
overall survival in patients with HBV-HCC (N = 242, 
P = 0.002) (12).

During the past few years, the COVID-19 pandemic 
represented a unique challenge. Developing more 
accurate diagnostic and prognostic tools was an 
important task. With that goal in mind, Tzankov et 
al. evaluated the roles of different CHST in human 
vascular smooth muscle cells by qRT PCR technol-
ogy. They found that increased CHST11 and 
CHST15 activity may lead to severe lung pathology 
in coronavirus disease 2019 (COVID-19) patients. 
Carbohydrate sulfotransferase 11 mRNA expres-
sion was increased by 3.1 times (N = 9, P < 0.001) 
and CHST15 expression was 2.1 times (N = 15, P < 
0.001) higher in the vascular smooth muscle cells 
of COVID-19 patients that had severe lung mani-
festations (79). These changes in CHST expression 
may increase the generation of chondroitin 4-sul-
fate and chondroitin sulphate E what, with N-
acetylgalactosamine-4-sulfatase activity being 
suppressed, may cause a vicious cycle that ends in 
refractory respiratory failure.

Severe inflammations may also induce life-threat-
ening thrombotic storms (TS). By using WES and 
whole blood samples, Nuytemans et al. found 
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pathogenic gene variants of CHST3, CHST12, and 
CHST15 genes, in more than 30% of TS affected pa-
tients (N = 26, P < 0.05 for all gene variants) (80). 
Taken together, CHST expression and polymor-
phisms represent new risk factors for infectious 
disease complications.

Pharmacogenomics

Genomic information is used to predict individual 
drug response. Yorifuji et al. conducted a compre-
hensive genomic association study using whole 
blood samples and DNA microarray and found 
that two SNP in CHST3 and CHST13 genes were sig-
nificantly associated with bosentan-induced toxic-
ity (81). The study extracted 16 SNPs (N = 69, P < 
0.05 for each SNP) using the Jonckheere-Terpstra 
trend test and multiplex logistic analysis. From all 
identified SNPs, two genes CHST3 and CHST13, 
which are responsible for PG sulfation were signifi-
cantly associated with the bosentan-induced liver 
injury. Researchers constructed a predictive model 
for bosentan-induced liver toxicity using these 
two SNP and two non-genetic factors: AUC was 
0.89 (sensitivity = 83%, specificity = 86%). The find-
ings demonstrate that the CHST3 and CHST13 al-
leles are much more common in individuals with 
increased aminotransferases and liver impairment 
after bosentan therapy than in other patients (81).

Laboratory aspects of the reviewed 
studies

A wide variety of molecular diagnostics and im-
munochemical methods including WES, MS HRM, 
qRT PCR, gene expression and DNA microarrays, 
Western blotting, immunoassays and immu-
nostaining were described in the reviewed stud-
ies. Western blotting, immunoassays and immu-
nostaining are well known methods already avail-
able in clinical laboratories while, thanks to COV-
ID-19 pandemic, qRT PCR entered many clinical 
laboratories relatively recently. Whole exome se-
quencing and MS HRM are the “research use only” 
but promising molecular diagnostics methods 
used for detection of mutations and estimation of 
gene methylation. Status of gene expression and 

DNA microarrays in clinical laboratory diagnostics 
is still unclear. Although not frequently used in the 
routine clinical laboratory, this technology under-
lies many commercial tests used for cancer risk 
stratification and prognosis.

It is interesting to notice that, besides the initial 
method development described by Paul et al., no 
clinical evaluations of serum CHST diagnostic per-
formance have been performed. Instead, gene or 
protein expressions has been measured (3). Since 
photometric enzyme activity assays are compati-
ble with widely available automatic chemistry ana-
lysers, the adaptation of CHST activity assays for 
automatic analysers would enable wider and more 
reliable diagnostic use. Detection of enzyme activ-
ities is also compatible with microscopic tissue 
analyses. Development of CHST activity based mi-
croscopic analysis is expected to improve availabil-
ity of these analyses.

Limitations and future prospects

According to the inclusion and exclusion criteria, 
studies covered by this review include clinical 
CHST test developments and evaluations or at 
least, suggestions on possible CHST clinical appli-
cations. Some of the selected studies rely more on 
preclinical data what may only imply the CHST 
clinical utility (10-12,57,58). These implications 
should be taken with caution since they still lack a 
proper clinical evaluation. Clinical utility of pre-
sented qualitative molecular diagnostic tests relies 
mostly on anecdotal evidence what is inevitable 
since these tests are aimed at the rare congenital 
diseases for which large patient’s cohorts cannot 
be gathered. However, in most cases, quantitative 
tests described in the selected studies were evalu-
ated using the ROC or survival analysis which pro-
vide more reliable diagnostic and prognostic data, 
respectively. Unfortunately, the number of partici-
pants enrolled in these studies varies from a few 
dozens to several hundreds. Larger cohorts are 
needed for the more reliable diagnostic evalua-
tion. Based on the ROC analysis performed in a 
single laboratory, a significant diagnostic accuracy 
has been assigned to the serum CHST7 concentra-
tion in differentiation of all stages of NSCLC from 
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the non-malignant pulmonary inflammations (73). 
However, an attempt to reproduce these results 
on the stage 1 and 2 of NSCLC failed, presumably 
due to variable reagent quality (results not shown). 
This indicates the need for multicentre and inde-
pendent evaluation and also the need for robust 
analytical methods.

The presented evidence coming from the early 
clinical studies shows CHST diagnostic potential. 
However, there is a gap between routine clinical 
usage of CHST tests and presented results. There is 
an evident lack of large multicentre diagnostic 
evaluations and robust analytical procedures. 
Without these reviewed CHST tests will not gain 
wider clinical use in foreseeable future.

Conclusion

A wide variety of molecular diagnostics and im-
munochemical tools including WES, MS HRM, qRT 
PCR, gene expression microarrays, Western blot-
ting, immunoassays and immunostaining were 
used in CHST diagnostic applications research. Se-
lected studies have shown the lack of CHST activi-
ty in some congenital connective tissue disorders 
and CHST overexpression in different malignant 
tissues. Gene mutation analysis of CHST3, CHST6 

and CHST14 should be performed whenever there 
is suspicion of spondyloepiphyseal dysplasia, 
Ehlers-Danlos syndrome, macular corneal dystro-
phy and ARMJD, respectively. On the other hand, 
CHST7 expression is NSCLC candidate biomarker, 
while CHST7 gene hypermethylation in white 
blood cells is associated with increased risk of 
colorectal cancer. Increased tissue expressions of 
CHST11, CHST12 and CHST15 were shown to be 
unfavourable prognostic factors of ovarian cancer, 
GBM and pancreatic cancer, respectively. Recently, 
some interesting diagnostic applications of CHST 
also emerged in infectious diseases and in phar-
macogenomics. These facts grant dynamic future 
development of CHST diagnostic and prognostic 
applications. However, a review of literature calls 
for caution. More reliable assessment of CHST di-
agnostic applications is needed. That assessment 
should be based on the clinical studies involving 
large and well defined cohorts of patients and use 
of robust analytical procedures.
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